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SLIDE RULE :

This application is a continuation of my copending applica-
tion, Ser. No. 450,235, filed Apr. 7, 1965, for Slide Rule.

Modern aircraft equipped with multiple camera arrays pro-
vide relatively large scale images in the band, usually perpen-
dicular to the line of flight, and that frequently extends from
horizon to horizon. There are, in addition, special purpose
oblique aircraft cameras—usually with long focal length lenses
and large angles of tilt. For the most part, this special purpose
oblique aerial photography is subject solely to qualitative in-
terpretation even though there are demands for determining
dimensional information from the oblique photographs.

There has been presented in the prior publication the
derivation of three computational and two semigraphic
schemes for the determination of lengths, heights, and areas
from single oblique photographs. The semigraphic schemes
employ transparent overlays from which significant precom-
puted values could be read as a function of the image position
on the photograph. In another publication there was presented
a series of nomographs by means of which the scale numbers,
derived in the first mentioned publication, could be found for
any camera installation.

The disadvantage with the prior-art method is that of the
wide vanety of oblique camera applications that makes
preparing overlays to cover all possible situations not feasible.
Also, the prior art nomographs, even though universally ap-
plicable, must be quite large and unwieldy if they are to
preserve the necessary accuracy; furthermore, they are sub-
ject to considerable wear-and-tear so that their useful life is
quite short.

It is accordingly the principal object of the present inven-
tion to provide a method and means of computing the dimen-
sions and positions of objects appearing on an oblique aerial
photograph

It is another object of the present invention to provide a
method and means of computing the dimensions and positions
of objects appearing on an oblique aerial photograph that
covers all possible situations.

A further object of the present invention is to provide a slide
rule constructed specifically for oblique photocalculations.

'Another object of the present invention is to provide a slide
rule constructed specifically. for oblique photocalculations
wherein one setting of the rule can compute one quantity as a
function of not more than three other quantities; the number
of manipulations is kept to a minimum; and the same set of
slide rule scales is usable for all the problems to be solved from
the oblique photograph.

Still another object of the present invention is to provide a
slide rule for computing the dimensions and positions of ob-
jects appearing on an oblique aerial photograph having tilt an-
gles extending from 0° to 95°.

Other objects and features of the present invention will
become apparent from the following detailed description
when taken in conjunction with the drawmgs in which:

FIG. 1 is the rotation of coordinates in the plane of an
oblique photograph;

FIG. 2 is the rotation between photo and object space coor-
dinate systems;

FIG. 3 is the relation between Ax and Ay for the image of a
vertical object;

* FIG.4isaslide rule arrangement for computing one quanti-
ty from two other related quantities;

FIG. 5 is a slide rule arrangement for computing one quann-
ty from three other related quantities;

FIG. 6 illustrates the arrangement of scales for computing a
first function;

-FIG. 7 is an 1llustratlon of the arrangement of scales for
computing another function;

FIG. 8 shows the arrangement of the special scales for com-
puting areas;

FIG. ¢ is an illustration for the scales for continued
products;

FIG. 10 is an illustration of scales for computing another set
of variables;
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FIG. 11 is an illustration of scale arrangement for direct
reading of trigonometric functions squares and square roots;

FIG. 12 shows scales for computing another function; and

FIGS. 13—13c show a complete layout of one set of scales.

To provide a clearer understanding of the slide rule of the
present invention, it is necessary to examine the formulas and
to rearrange them as required to reduce the number of
manipulations while still retaining the maximum computa-
tional accuracy. Oblique photocomputations are essentially
concerned with the transformation, under the laws of projec-
tive geometry, of image dimensions measured in the photo-
graphic system to object dimensions measured in object space.
The two coordinate systems are distinct and the relation
between them is given by the exterior orientation of the
camera at the time the photograph was exposed. The photo-
graphic system is an orthogonal right-handed coordinate
system having its origin at the principal point of a positive
print of the photograph employed. The xy plane is the plane of
the photograph, and the y axis coincides with the principal line
and its positive direction is upward on the photograph. The
principal line is the trace on the photograph of the vertical
plane containing the camera axis at the moment of exposure.
It passes through the principal point and is perpendicular to
the horizon. The z axis coincides with the theoretical position
of the camera axis. The only dimension measured in the z
direction is the camera focal length f, and the formulas are ar-
ranged in such a manner that fis always used with a positive
sign.

The usual measuring axes on a photograph are located by
the fiducial marks at the edges of the picture area. If this coor-
dinate system is called uv, the clockwise positive angle
between the v axis and the +y axis is called the angle of swing
s. With reference to FIG. 1 the xy coordinates are given by

standard coordinate rotation formulas:
X=UCOSS—vsins N
y==usins+vcoss 2)

If the y axis is displaced towards the other side of the v axis,

the angle s may be taken in the fourth quadrant with the ap-

propriate signs for the trigonometric functions, or s may be

considered a negative angle with the appropriate signs for the

trigonometric function. Specifically, it may be observed that
uv=fiducial coordinate system

xy=oblique photocoordinate system .

oy = principal line of oblique photograph

o= principal point

r=any image point

s==angle of swing.

Formulas for oblique photocomputations are expressed in
the xy principal line system and in general, it will be easier and
more accurate to measure directly in this system than to apply
the rotation formulas. However, the coordinate rotation may
be computed on the slide rule of the present invention.

The object space coordinate system is a right-handed
orthogonal system with its origin at the ground nadir point V
of the photograph concerned. The +Z axis coincides with the
plumb line from the exposure station to the earth’s surface.
The +Y axis is the trace of the principal plane of the photo-
graph on the XY plane representing the earth surface.

With the coordinate systems defined as above, the relation
between the two systems is defined by two parameters;

H = the Z coordinate of the camera lens at the moment of

exposure '

t=the angle between the +Z axis and the +z axis at the mo-

ment of exposure. This angle is conventionally referred to
as “tilt.” The complement of ¢ is the depression angle &
which is sometimes used instead of tilt.

These relations are illustrated in FIG. 2 where

uv =fiducial axis system

xyz=oblique photo axis system

XYZ=object space coordinate system

s==angle of swing
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L =exposure station

oL = f=camera focal length

VL = H = altitude of exposure station above .horizontal

plane through object

t=tilt angle

8= depression angle

pLVOop = principal plane of photograph.
. A photograph having less than 5° tilt may be treated as a
vertical photograph without great error, therefore, the first
formulation' of the ‘computational equations is designed
specifically for the range of 5°=<¢=<85°. The ranges from 0° to
5° and from 85° to 95°, which sometimes require special rear-
rangements, will be treated separately.

The length of a horizontal line 4B on the ground may be
found from

AB=NOm—tm Ay

in which
vi=fcost—ygsint . 4)
We elect to use, instead of v, and v, the value
vo=fcost—y,sint
computed for the mid value of y

yo__:y&‘;yb

Furthermore, we set
Ax=|(x,—x,)|
Ay= |(y»—ya)l
I=VB2 A= image length on photograph
L = object length on ground.
Making these substitutions in formula (3), we obtain

L=v£2‘/vozsz+szy2

H fiAy?
repl a2

or

(5)

If we set

Yo

Co=1—"

tan ¢

(6)
then

v,,l= c,fcost.

Spbstituting this in formula (5) gives

o H [ AP

L"cof cos t\/Ax +c‘,2f2 cos? ¢

_Hsect

Toef

Ay? sec? ¢

2
L Ax?-- o

(7N

Now weTet

sec it

Co ) (8)

where s is an auxiliary angle (not related to the swing angle).
Note:that this substitution is valid only if ¢, < sec f. Making
this substitution in formula (7) we obtain or

L=£I'cs%‘t~’sz+Ay2(l+tan2 $)

sec §==

=£S_e°_t VT Ay? tan? s
cof
or

_Hsect I Ay? tan® s
el LT
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which is the final form for computation. To organize the com-
putation we use equation (6) and define

N =£;e—“=constant for any one photograph
(10)
* Ay? tan? s
o \/ I+= (11)
Ilc*
*y= Coy
Then equation (9) becomes
Ni*,
L-—T

which is the final form for computation. It will be noted that
each of these quantities is obtained as a function of not more
than three other quantities. It will later be shown that scales
can be constructed so that each of these computations can be
done by one setting of the slide rule.

For the case whenc, sect, welet
— Co
seC u=_"> (12)

where u is another auxiliary angle (not related to the photo-
graphic coordinate u). Substituting (12) into formula @)

. gives
_Hsect [, Ay?
L= Cof v +(1+tan2 u)
_Hsect [Ax2+Ay2FAz? tan? v
T eof sec? u
or
Hsect l Ax? tan® u
Le=——+ secu\/l”" B (13)
If we now define
22 tant u
*= —_—
e \/H' 2 (14)
le¥,
Pe=m

It is apparent that formula (13) may be written

Ni*,
sec %

It is only necessary therefore to have an unambiguous decision
as to whether formula (8) or (12) applies. This is readily ac-
complished in the design of the slide rule.

For future reference a quantity of the form

l+m/ntan@ (15)

will be designated as ¢ with an appropriate subscript. Likewise
a quantity of the form

lxm/ncotd (16)

which uses the cofunction will be designated as ¢ with an ap-
propriate subscript. Similarly a quantity of the form
m*tan* ¢

nZ

1+ (7
will be designated as c* with an appropriate subscript.

The use of an average v, instead of va and v, in equation (3)
has been suggested. An extensive error analysis of the effect of
this substitution has indicated that the substitution is always
Justified when the tilt is small. It is also reasonably justified for
large tilts—if the image to be measured is in the lower section
of the photograph, and the difference in the y coordinates of
the end points is not large. However, for images near the
horizon, the substitution may lead to serious error unless the y
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coordinate difference is quite small. In any case where the y
coordinate difference is fairly large, it-is recommended that
the image be broken into sections, and each section be com-
puted separately. Furthermore, the accuracy of any result
computed by the formula given may be improved by multiply-
ing it by the ratio ¢,?/c,c,. The ¢’s are readily obtained from the
slide rule. )

Formula (3) as given is geometrically correct. However, it
has not been found possible to adapt it to slide rule computa- 10
tion without an unreasonable number of manipulations and
several side additions or subtractions.

The formula for the height of a vertical object is given as
he 2 (Y ys)
T g (18) 15

in which
y¢=1y coordinate of image of top of object
y»=y coordinate of image of bottom of object
vww=fcost—y,sint

&=fsint+y, cost 20
Hwelet
Ay= |(y)|
this formula may be rearranged as follows 25
he ' HiAy
" (S cos t—yy, sin ¢) (f sin ¢+, cos )
_ Hfay
fecost (J—M)f sin tj(l-l—w) 30
\ s f
(19)
or
h-—H sect Ayesct . 1
Tf yecot t yotanty - 35
14+ 1-5
With the previous designations, and with the definition
. Ayecset
Ag¥ =202 20
Ct ( ) 40
equation (19) becomes
. *
B NAY
Cb

On oblique photography, particularly that made with long
focal length lenses at considerable tilts, the difference in y
coordinates for a vertical object will generally be considerably
greater than the difference in x coordinates. For this situation
the compuitation indicated by formula (19) is most suitable.
However, for obliques with small tilts, images near a line
through the photographic nadir point and parallel to the x axis 30
may have a larger x coordinate difference. A formula for this
case is easily derived by reference to FIG. 3. .

The images (extended) of all vertical objects pass through
the nadir point of the photograph. The distance on from the
principal point to the nadir point is ' 3

on=ftant.
Consequently, from Figure 3 we obtain
ftant+ yb _yi—yp_ Ay
T4 Tze—z, Az
This may be solved for Ay
_Ax(f tan t4y¢)
=

65
which may be substituted into formula (18) with the
result )

60

Ay

=E Ax(f tan b4y
UGt Ty

Rearranging this and substituting the expression for 70
g we obtain
p— HEAX (£ sin t+4y: cos ) sec t
- UpTy

h

(fsin ¢y, cos &)
h=Hf sec t Az

. 75

6

For slide rule computation this formula is rearranged
as follows
Hf sec tAx

~(f cos t—yy sin )z
Hf sec tAz

B (fcost) <1 “y‘b"?g_t)xt

_Hsect f Axsect
T m | _yptant

f (21)
With the definitions ) :
Ak = Az sec t
Cy
__fAax®
=
it is apparent that 4 can be computed as
. h=N-p.
The formula for computation of a horizontal area is given as
_ Hf.q
" (f cos t—yg sin 8)° (22)
in which
A=the area on the ground
a=the corresponding area on the photograph
¥y = the y coordinate of the center of gravity of the photo-
graphic area. ‘ .
" This formula may be rewritten as
H 2
A= Hfa =
S cos? .t(l——g‘f tan t)
f /
‘ _(H sec t)2 asect
o 3
f (l—g‘—"tan t)
: i (23)
If we set '
a*=asect
we may write formula (23)
. Nig*
T ocd (24)

The formula for the X coordinate of a point in the object
space coordinate systemi is also illustrated in FIG. 2 where
H.x

“fcost—ysint (25)
The formula may be rewritten
X=H sec ¢ x
f 1Y tan ¢
o f - (26)

In the notation employed for the slide rule computation, this
becomes

_Nz
Cy

The formula for the Y coordinate is
(f sin t+y cos £)

YzH(f cos t—y sin ¢) 27)
This formula is rearranged as follows
f sin t(l +y——°]?t t)
Y=H. ‘ ytant
f cos t(1—~—f———) (28)

In the notation employed, this becomes

Y=H tan tgi
) Cy
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For ease in slide rule computation we define
' C=T,tan¢, (29)
whence
-

The horizontal distance D from the nadir point is given by
’
D=VX*+ Y2 30)
For slide rule computation this may be rearranged. f X 2 Y
D= X\/l +——- tan? 45°

whereasif Y > X

D=Y—J1 +—— tan? 45°

In both cases the radical is of the form ¢*, and hence may be 20

computed by the same slide rule scales.

Obviously, if the X and Y coordinates of two points are com-
puted by any method, the projected horizontal length L of the
line between them is given by

L=VAX*+AY? .

This equation can be treated just as equation (30) with AX,
AY, and L replacing X, Y, and D, respectively. Computing the
length in this manner from AX and AY is preferred only if the
two end points are at considerably different terrain elevations.

In such a case, a different value of H (terrain clearance) would’

be used in the computation of the object space coordinates for
each of the points.

The formulas in the preceding sections have employed sec ¢
and tan ¢ as fundamental terms. When ¢ approaches 90°, these
functions approach infinity, and the formulas become indeter-
minate. This has two results on the slide rule: first, the scales
become of infinite length; second, for values of ¢ approaching

90°, computing accuracy is lost. To circumvent this situation, 40

when 85°<r<95° the formulas are recast in terms of the
depression angle §, and the necessary rearrangements are
made to eliminate the indeterminate forms. The depression
angle 8 is positive when measured down from the horizon,

negative when measured upward. It must be appreciated that 45

objects whose images appear near the horizon on a photo-
graph are poorly determined geometrically. No rearrange-
ment of formulas can circumvent this situation.

When the tilt ¢ is near 90°, formulas (6) and (7), which con-

cern the case ¢,<sec ¢, break down since both tan ¢ and sec ¢ 5

approach infinity. To eliminate this difficulty we use a dif-
ferent method of computmg sec s. From formulas (6) and (8)
we obtain
sec ¢
sec 8=~—'E‘—

(]

sec ¢

1—— tan t
!

1

Yo _:
cos t—==sin ¢
!

Writing this in terms of the depression angle §, we obtain
. R :

sec §== ”
sin 5—Z> ¢cos &
7
We designate
. . "
— —— o
P=sin s 7 cos (31)

Each term of P can be computed by one setting of the slide
rule with proper attention to the algebraic signs. The quantity

P is then determined by a side addition or subtraction not

utilizing the slide rule.

8
The auxiliary angle s is then obtained from
sec s== L
P

Making these substitutions in equation (9) we obtain

l Ay? tan2
L‘_‘J1+ (32)

For slide rule computation we organize thlS formula as follows
10

cqk
Q1=Zg
HO,
L==%
f

15

The quantity P is very small, if and only if the image is close to
the horizon, where the determination of the length is geomet-.
rlcally very poor. The case distinction ¢, <sec ¢ becomes P <

For the alternate case when ¢, _>_ sec £, thatis P =1, we ﬁnd_

from equation (12)
(1 —Z2 tan t)

25 sec u_sec ¢ sec T sect
=CoSs t—'? sin ¢
30 =5in 6—%‘3 cos &
or

secu=~P .

Formula (13) then becomes

) Az? tam2
fmJ+ (33)

which is organized for slide rule computatxon as follows

35

The precaution against large values of AY as described
above is particularly applicable to computations with photo-
.graphs having these large values of tiit. Because of the approx- -
imation made in the assumption of an average c,, no particular
simplification is obtained for the case when the depression
angle is exactly 0°.

At tilts near 90°, formula (19) for a vertical height becomes
indeterminate. Multiplying numerator and denominator of
equation (19) by cot ¢, we obtain

Hcsct Ay esc i

(1+ cot t) cot t(l———- tan t)

Writing this in terms of the depression angle we obtain
Ay sec d 1

f (l—i—y—t tan 5) tan 5(1—&’ cot 6)
! !
The set of computing formulas then becomes

)

Eb=(1—% cot 6)
ct=(1+% tan 6)

Sp=0p tan 6= tan oY

/

55

(34)

65 No=

70

(35)

Ay sec d

L=
Ay o
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. Sb

The depression angle very near 0°, the term ¢, may not be
computable on the slide rule. In such a case the quantity S,
-should be computed from the second form of equation (35).
The value of tan 3 can be found from the rule and the quotient
yulf can be computed by one operation. The quantity S, is then
found by a side operation not using the slide rule. When —5°<
8<5° and |y| £ f, the image of a vertical object will always
have |Ax| < |Ay| . Consequently, no rearrangement of for-
mula (21) is required. When the depression angle is exactly 0°,
and S, is expressed as the second form in equation (35), it will
be observed that equation (34) reduces to

and finally
h=

_—Hay
T % (36)
which may be computed in one operation on the shide rule.

As t approaches 90°, formula (23) for a horizontal area
becomes - indeterminate. Multiplying numerator and
denominator by cot? ¢, and expressing the result in terms of the
depression angle, we obtain

H?  sed®d.q
A= 7 3
6_ 4.3
(tan (37)
. From the slide rule tan & can be determmed until —0.5° 8
0.5°. Beyond this point 8 may be considered 0°, and the special
formulas for that case may be employed. Otherwise the quan-
tity in the parentheses is of the same form as equation (35),
and may be computed with the slide rule and one side opera-
tion. Formula (37) may then be organized as
Nbdtas*

=—g5

in which
ad*=q sec &, Na=? sec 8.

Thus 4 may be computed on the slide rule using the same
scales employed in the usual case.

For the case when § is exactly 0°, formula (37) becomes

oz a
f (38)
which for slide rule computation may be organized as follows

H —Ye

—=— T e

N3 7 7
Nbé*a

A=—r— T

Formula (25), which gives the X coordinate of a point in the
object space coordinate system, may be rewritten in terms of
the depression angle as

- H=z
" fsin 6—ycos 8
This may be rearranged as
oy ___que;L
—y{1—=tan 6)
y( y (39)
For slide rule computation this is organized as follows
N2=H sec d
-y
ci=1 _ tan &
Y
x=20,
Ct
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Formula (27) for the Y coordinate in object space may be
expressed in terms of the depression angle as
Y= (f cos 8+y sin 3)
(f sin —y cos §)
This may be rearranged to give

ﬂ(H—% tan 8)‘

_y(l—af tan 8).

For slide rule computation this is organized as

Ny
-y

Y=
(40)

c,;l+% tan &
!

cs=1—=tan §
Y

Nacy
Ct

Y‘:

When 8 0 and the y coordinate of the image point is 0, the
denominator in both equations (39) and (40) becomes in-
determinate. Consequently, when the y coordinate is quite .

small, the denominators must be computed by the alternate
form

U=ftand—y
which requires one setting on the slide rule and one side com-
putation.
Then the X coordmate is given by
H sec oz
X==7
and the Y coordinate by
_Hf ey
Y="7

When the depression angle is exactly 0°, formulas (39) and
(40) reduce to

and

each of which can be computed in one operation of the slide
rule.

Within the computing accuracy usually required by
photointerpreters, photographs with tilts less than 5° may
usually be considered as vertical, and the simple formulas for ¢
= 0° may be applied. However, if better accuracy is required,
the special purpose slide rule of the present invention may be
used, and the following presents the applicable formulas.
When tilt is small, formulas (9) and (13) may be used without
change. As a matter of fact the formulas yield their best accu-
racy under this condition. When tilt is exactly 0°, both formu-
las (9) and (13) reduce to the simple fon'n

Hl
L=t
f

which is readily computed in one setting of the slide rule.

When the tilt approaches 0°, formula (19) becomes indeter-
minate since both csc ¢ and cot ¢ approach infinity. This dif-
ficulty is eliminated by muitiplying numerator and denomina-
tor by tan ¢, with the result

H sect Ay sec t

I tan l(l-}-y‘ cot t) ( b tan t)

a=

(41)
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The set-of formulas for computation becomes

?\T=H sec ¢

Yb
cp=1—~—= tant
b f

E,=1+yf—° cot ¢
Ay sect .
Ko DY TV
Yy o
V=0 tan t=tan t+y]7t
T Ay¥
h=A Ay

Y (42)

When ¢, is not computable on the slide rule, the angle ¢ is very
close to 0°, and formula for a vertical photo may be used. Al-
ternatively, the quantity V may be determined from the
second form of equation (42). This may be done in two slide
rule settings and a side computation. ,

No difficulty is encountered at small tilts with formula (21),
which gives the height as a function of the x coordinate dif-
ference of the image.

When ¢ is-exactly 0°, and V is given by the second form of
equation (42), equation (41) reduces to

iy
h=H (43)

Similarly, equation (21) reduces to

Az

By reference to FIG. 3, it may be seen that

sz Ay 1
T, Ye+ftani r

which for a vertical picture becomes

Yo T
so that both formulas (43) and (44) may be written
h=mt
which is the familiar relief displacement formuia for vertical
photos.

No difficulty is experienced with formula (23) for a
horizontal area as ¢ approaches 0°. When ¢ is exactly 0°, for-

mula (23) becomes
()
!

which is readily computed on the slide rule.

_ No difficulty is encountered in computing X from formula
(26) when ¢ approaches 0°. However, the numerator in equa-
tion (28) for the Y coordinate becomes indeterminate. To
avoid this difficulty, we rearrange equation (29) as follows

Tt

(45)

¢=¢c, tan t=tan t<1+y—%,°—t——t)

e=tan i+ (46)

If the point whose Y coordinate is sought does not lie on the
line y =0, this may be rewritten in the form

y f ) Y
=2 = i)==2
C ¥ (1+y tan fo
The Y coordinate is then given by

(47)‘
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When the y coordinate is very close to zero, C may be com-
puted from equation (46).
When ¢=0°, formulas (25) and (27) become
H
X==z
!
and
8
FU-

As mentioned in the above, it is recommended that photo-
graphic measurements always be made directly in the xy prin-
cipal line coordinate system. When measurements are made in
the uv fiducial coordinate system they must be rotated by
means of formulas (1) and (2). Although these formulas can
be rearranged for more direct slide rule computation, special
cases arise when either u, v, or s are small. Consequently it is
recommended that each term be computed separately on the
slide rule. Then a side computation may be made to determine
the final coordinates. »

In particular, a slide rule can be constructed to perform the
general operation of finding any one of the three quantities a,
b, ¢ when the other two are known, provided only that there
exists a relation of one of the forms

Ra) gb)y=h(c) (50)

or

F(a)+ G(b)=H(c) (51)

wherein fla), g(b), and h(c) are real positive functions or
F(a), G(b), and H(c) are real positive or negative functions of
the given quantities.

The existence of an equation of the form (50) implies the
existence of one of the form (51), as can be seen by letting

F(a)=log.fla), G(b)=log,g(bh), H(c) =log.h(c),

where k is any real positive constant other than 1. This allows
one to rewrite equation (51) in the form

logif(a) +log,g(b) =log.h(c),

from which (50) follows at once since the logarithm of a
product is the sum of the logarithms.

Similarly, if an equation of the form (51) exists, it is possible
to derive one of the form (50) from it. If k is any positive
number different from 1, the relation (5)) implies the
equivalent relation

kF@ + GO — LH©
which, by the law of exponents, is equivalent to
kF(u) . kG(b).._= kH(c) .
By setting
f(a) _.=kF(a), g(b) = kG(b), h(C) — kH(c)

this becomes an equation of the form (50).

It is convenient from a designer’s point of view to use the
equation of the form (51), since it can be regarded as a vector
equation and be translated directly into mechanical addition
on a slide rule, as is shown in FIG. 4.

The directed length of the vector F(a) is measured from a
register line on the body. The terminus of the vector F(a) is
located by a graduation labeled g (not F(a)). Similarly, the
vector H(c) is laid off on the body from the same register line
and labeled ¢. Finally, the vector G(b) is laid off on the slide
and its terminus marked by a graduation labeled . When
graduations are placed for suitable sets of values of g, b, and c,
the body will contain two scales and the slide one scale. These
scales are marked with the numerical values of a, b, and ¢,
respectively, and may be used to perform the desired compu-
tation mechanicatly.
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The operation described above can be generalized to four
functions, F(a), G(b), H(c), and K(d), provided only that a
relation of the form

F(a)—G(b)+H(c)—K(d)=0 (52)

exists among the four variables a, b, d, ¢; with F, G, H, and K
real functions of the respective variables.

In this case, the vector equation (52) is directly translated
into a mechanical operation by means of the diagram of FIG.
5.

Note that such an arrangement permits the computation of
any one of the four quantities from the other three with the
'same ease as the previous arrangement permitted the compu-
tation of one quantity from just two other related quantities.
Thus the pumber of operations will be minimized if, in com-
puting a lengthy formula, three quantities can be combined at
each step to yield a fourth. This principle is followed in the
design of the slide rule of the present invention.

One further method to help minimize the number of
manipulations is to arrange the scalés so that as many compu-
tational results as possible may be read at one settmg of the
slide. For example, suppose the four variables in equation
(55) consist, in some order, of the camers’s focal length f, the

tilt ¢ of the camera’s principal axis at.the time of the exposure 25

of the photograph, a measurement of a length Ay on the
photograph, and a quantity ¢ to be computed. It would be
desirable to arrange the equation in such a way that a and b
are the two quantities, tilt and focal length, which depend only
on the circumstances under which the photograph was taken.
If this is done, then as long as only one photograph is studied,
the position of the slide along the body will remain fixed as dif-
ferent measurements of lengths Ay come under consideration,
no matter where the lengths Ay occur on the photograph.
Thus the different values of the desired quantity ¢ to be com-
puted corresponding to the various values of the measure-
ments Ay can all be determined with a single setting of the
slide. This principle also is followed in all phases of the design
of the slide rule.

Unfortunately, not every equation relating four variables
can be arranged into an equation of the type of equation (52).
One of the principal tasks of the design of the slide rule of the
present invention is to rearrange the pertinent mathematical
relations in such a way as to get them to conform to this type.
To be able to do so required the substitution of approximate
formulas in some instances.

In designing the slide rule, three types of inaccuracies which
can occur in computational work were considered. The first
type of inaccuracy resuits from the intrinsic inability of the
scale graduations to give more than a certain number of sig-
nificant figures in the result. Each additional significant figure
which one requires multiplies the length of the scale by 10.
Thus, it is desirable to carry no more significant figures in the
computations than are warranted by the data. The fewer sig-
nificant figures carried, the shorter the scale may be. It is
desired to solve the problems within 5to 10 percent.error. Not
much greater accuracy ¢an be expected from the data. Hence
the choice of retaining two to three significant figures is made
here. Two when the first digit is 5 or more and three when the
first digit is less than 5.

The second type of inaccuracy considered is that of
misreading of numerical values from the scales. Special atten-
tion has been given to designing the graduation styles so that
they will not be “error prone.”

The third type of inaccuracy considered is that of misloca-
tion of decimal points. To avoid requiring the operator to shift
decimal points in certain computations, thus risking the com-
mission of errors, the slide rule has been designed with enough
length to cover the desired range without decimal point shifts.

Also, certain scales were duplicated on the slide and on the
body of the rule as a matter of convenience rather than neces-
‘sity. This is similar to the duplication of the D scale on the two
sides of the ordinary 10 inch long log slide rules. Here there is,
however, an additional reason of accuracy, for if a cursor with

14

hairlines on both sides gets out of adjustment, the duplication

of scales in such a way as to avoid the necessity of making

settings on one side of the rule and readings on the other

eliminates a major source of error. Thus the principle was fol-
5 lowed, that each computation should be carried out on a sin-
gle side of the slide rule and in such a way that the use of the
hairline is, insofar as possible, confined to making alignments
between adjacent scales or scales as nearly adjacent to each
other as possible.

In order to determine the totality and arrangement of the
scales which are necessary or desirable on the slide rule, it is
appropriate to make a brief listing of the types of computa-
tions necessary. This list will contain only one expression of
any given type, although several formulas may use the expres-
15 sion with different sets of symbols.

Expression of the form

m
c—l:l:r—b tan 6

10

(53)

and m
20 P L
c—l:{:n cot 8 (54)
occur in most of the solutions. The recognition that this type
of equation could be solved at one step with properly con-
structed slide rule scales and the formulation of the solutions
in terms of this type of expression were two of the most impor-
tant advances in adapting-the solutions to slide rule computa-
tion. '
Other key. advances in the slide rule solution of the photoin-
30 terpretation problem came when it was discovered that the
equations of the form
m2
*— ™ tan?
c —»\ 1+n2 tan? 6 (55)
35 could be solved at one step on suitably constructed slide rule
scales. It was especially fortuitous that a means was discovered
to employ the same scales for m, n, and 6 as were used for
computing ¢ and c, and that only one additional scale was
required for c*.
40  The computation of the angle s from the formula
_sect
sec §=—

~o
when ¢, < sec t, which arises when one tries to express the
length of a horizontal line in terms of the length of its image,
may be called the secant dilation, since it replaces the tilt by a
larger angle. This computation requires one new scale.
The formula

45

Co
gee u=——;

sec t (12)

50
arises in the problem when ¢, > sec f. This can occur only
when the midpoint of the image of the horizontal line has a
negative y, and even then only if either the numerical value of

55 yislarge or the tilt angle is large.

Formulas such as

Q=-‘%’i: C‘%A s;c 8 oA 'f:;c ] 56)
®0 and A tan § A cot
C==p =" )
as well as such fofmulas as
B=Asing, B=Acos 8 (58)
and »
70 B=Asec8,B=Acscé, (59)

B=Atan g, B=Acot ¥,

must frequently be computed. ,
The phetographic invariant N of equation (10) is of one-of
75 the forms in (56). Since sin 6 and cos 6 are reciprocals of.csc.6
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and sec 6, Tespectively, the formulas (58) can be regarded as
of the same type as the second and third formulas in (56) with
the denominator B set equal to | and the equations solved for
A. Similarly, equations of the type (59) are special cases of the
type in (56) and (57) with the denominator set equal to 1.
- Likewise such computations as

A
C=4B, C=g (60)
may be regarded as special cases of equations of the first type
in (36) with one of the terms set equal to 1. Thus all such cases
will:-be covered if scales are provided to solve for any one of
the unknowns in terms of the others in each of the equations
of (56) and (57).

The problem of determining the area involves the computa-

tion of an expression of the form

o=AE"

Scales should be provided on which only one step is required
to compute Q from arbitrary 4, B, and C. Notice that with
such scales, simultaneous specialization of two of the four
variables to unity in various ways shows that they will provide
means for squaring, cubing, extracting square and cube roots,
and raising numbers to the 2/3 and 3/2 powers. As a bonus,
they will compute reciprocals of squares and cubes.

In computing the distance between two points from the dif-
ferences of their coordinates, one is required to compute such
expressions as

C=vA’+ B . (62)
A one-step solution of this equation is possible by two special
identical slide rule scales having the values of A4 placed at A2
units from the register point on the scale. These scales, how-
ever, have spacing which varies extremely rapidly. This
creates difficulties in securing accuracy over a wide range of
values. Besides, two additional scales, one on the slide and one
on the body, would be required. Finally, these scales would
not cooperate in any useful way with any of the other scales,
all of which are logarithmic in nature. One can compromise,
however, for a two-step solution if he employs the formulas of
type (55) and (60). This may be seen by noting that

— B
VA2 +Bi=+ A?+ E? tan? 45°=A W/H'% tan2 45°

The radical in the last term in first computed, then multiplied
by A. In practice, greater accuracy is obtained if the larger
quantity is taken as 4. '

Most of the application of the slide rule to photointerpreta-
tion has been arranged in such a way as to avoid the computa-
tion of triple products of the form

P=ABC (63)

There are, however, occasional formulas, occurring prin-
cipally in the special cases of extremely high tilt (near 90°) or
extremely low tilt (near 0°), that require such a computation.
In order to implement the computation of such a product at
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explicit choice of scale functions, employs the specific formu-
las which are to be used in the application. For example,
among the applied formulas which use equations of the form C
= (4 sec 8) / B, the one which requires the greatest range is
equation (10), namely, N= (H sec t) / f. If the pertinent scales
are made long enough to accommodate this computation for
all required combinations of the variables, they will then have
sufficient range to accommodate all other required computa-
tions of the same type.

The photointerpretation equations specifically selected for
determining the scale functions are

Hsect Y
N= y c=1+=tan{
f f

y? sec {

c*=-\/1+‘,/7 tan s, sec s=——~ =1
r4 [+]

=l > _Nea*
sec u——s 25/1, o

In addition to these photointerpretive equations, there will
be adjoined to three general purpose equations, the first one
of equations (56), (63) and (64) which are

A2B?
C?

A slide rule which will perform all nine of these computa-
tions throughout the required ranges will perform the remain-
ing operations throughout their required ranges. In only one
instance will a shift of decimal point be needed; viz, when the
distance D is to be computed from equation (30) by the
method described above, a simuitaneous shift of the decimal
points in the coordinates X and Y where they occur under the
radical may be required. Because some of the photoin-
terpretation variables and layout variable D have names coin-
ciding with already established names of slide rule scales, par-
ticular care must be used in the following sections to distin-
guish which meaning the symbol has. The symbols which will
denote the names of scales and also have other meanings are
A, B, C, D, and Q. For example, the letter 4 will denote vari-
ously, the ground area of a region, a term of a product or quo-
tient, or the name of a scale. The scale must be given a dif-
ferent name from the usual one, the photointerpretation sym-
bol must be changed from the usual one, or the letter is al-
lowed to have different meanings in different contexts. The
last alternative appears as being the least confusing. Similar
circumstances arise with the other cited variables.

The computation

@=22, p=480, ¢=

_Hsect

7

is one which is performed for each of the three problems. This
equation may be rewritten as

N (10)

logsec t—log N+log H—from f=0 (65)

For 0°<1=<85°, the value of sec ¢ is between 1 and 12. For f=>
0.5 and H <100,000, the largest possible value of N is
2,400,000. For the same range of ¢, with f=<1000 inches and H
=50 feet the smallest possible N is 0.05. This small N is not

one setting of the slide, a single additional scale will be g0 Jikely to be realized; in fact, for photointerpretation purposes

required.

In some of the high or low tilt regions where computations
are done by special methods to avoid indeterminacies, it may
occasionally be advantageous to be able to perform such com-

putations as computing the expression Q from given values of ¢5

A, B, and Cin the formula
A?B?
=Tc¢T (64)

Such computations as these can be performed at one step with

a suitable combination of scales. Only one scale in addition to 70

those required for the other computations is needed.

In establishing a slide rule for computations which concern
a definite application, not only must the mode of calculation
be established, but also the length of the scales to be em-

ployed. For this reason, the following discussion leading to the 75

it is most unlikely that any combination of H and fwill be used
for which N<.

This suggests that the functions H and N be placed on the
same scale. This scale will be called the E scale and will have a
range from 1 to 10,000,000.

The scale for f, which will be called the D scale, should be
adjacent to that for N and the range should be not less than
from 0.5 to 1000. On the rule as finally designed, this scale has
the range 0.0001 to 1000, since other quantities requiring
smaller values are also to be set and read on it. The left end of
the D scale is taken as the register line from which all layout is
made on the slide. Thus the layout distance is zero when f=
0.0001 and the layout function is

D=4+og,f
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To make each cycle of the scale long enough to get the
required reading and setting ‘capability with a sufficient
number of intermediate graduations in each cycle, the layout
uriit is chosen to be 2.5 inches. (For a layout unit of 1 inch the
scale function would be 10 + 2.5 log,of). The choice of 2.5
iiches for the layout unit on the D scale sets the stage for using
the layout unit 2.5 inches on all of the scalés of the slide rule.
This convention is adopted throughout and whenever inches
are desired, a multiplication by 2.5 is necessary.

Since it is desirable to establish the scale for N in such a way
that N =1 falls at the register line at the left end of the rule,
the layout function is

D=log,:N
The layout function for the secant scale will then be
D=4 +logysect.

The choice of these functions is equivalent to rearranging
the logarithmic equation (65) into the equivalent equation

(4+logsect)—logN+iog H—(4+1logf)=0
FIG. 6 shows a diagram of the arrangement. A second basic
computation is
c=1—Y tan 1.

For points below the horizon ¢ is positive. To separate the
variables in this equation, one has to distinguish two cases, y
tan? >0 and y tan ¢ < 0. In the former case a difference of ab-
solute values occuf$ and in this case we shall denote the com-
puted quantity by the symbol ¢! and rewrite (6) as

-_Y
l—c=% tan i,
f
This may be rewritten as

log(1—c')=log|y| +log |tant| ~logf

or
(4+log |tant | )— (4 +logf)+(4+log |y 1) —
[4+log(1—c)]=0.

The inclusion of the 4 in each layout function is for the pur-
pose of placing the range of each variable in the appropriate
position on the rule. The arrangement is shown in FIG. 7.

The scale names used are tangent scale, C scale, C scale and
¢! scale for the respective variables ¢, f, y, and c'.

When y tan ¢ < 0, the quantity on the right of equation (6)
involves the sum of two positive numbers. Denote the quantity
to be computed by ¢*, then

y tant_ ly|-[tan |
=

ct— 1=

from which we may obtain
(4+log|tant|)—(4+logNH+(4+log|y|)—
[4+1og (c*—1)]=0.
This yields the same arrangement as for ¢! except that the
scale function D=4 +log (1 —c¢™)is replaced by
D=4+log(ct—1).

A second numbering of the ¢! scale enables both ¢* and ¢! to
be read from it.
To compute

¥
!

cot ¢, one needs merely double number the tangent scale so it
‘also serves as a cotangent scale and use the the ¢* scale or ¢!
scale according asy cot? < 0 or y cot ¢ > 0. Similarly, for

c=1-

,;:1_2 cot £.

f
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Another important quantity to be computed is

——
C*=—\/1+A—g—- tan? s. (11)

To separate variables, this equation may be rewritten as
%log (c*2—1)=log Ay—log [+log tan s

or

(4-+log tan ) — (4+4log) + (4-+log y) —.

[4+% log (c*2— 1)]=0-

This last rearrangement shows that s, I and Ay, can be used on
the respective scales of ¢, f, and y of the previous computation,
provided only an additional c* scale with scale function

D=4+% log (¢*2—1)

is substituted for the ¢* and ¢! scale. The c* scale may be laid
parallel to the ¢*, ¢! scale and a cursor with a hairline used to
spar from the y(f or Ay) scale to the c* scale. Thus only one
additional scale is required for this equation.

When ¢ is between 85° aiid 95° the computation

f

c=1== tan &
. Y

where 6 is the depression angle, is required. This may be ac-
complished using the tangent, C and ¢! or ¢* scales, the ¢! scale
if ‘

1%1¢S>O or the ¢t seale if Eﬁi‘—];—is<0-

In computing the length of a horizontal line the compuia—
tion

sec t

Co (8)

is employed when ¢, < sec . This can be done on the same
scale as was used to compute N, provided a double numbering
is made so that the range is properly set. This second number-
ing should be exactly as on the C and D scales and the scale so
numbered is also called a Cscale.

The computation

sSet §=

Co
sec i

sec u= (12)

replaces the last previously discussed computation when ¢, >
sec ¢. Although this could be done on the already established
scales, by means of an increased numiber of manipulations, the
addition of a second secant scale, this time on the slide, per-
mits the case to be automatically determined and the ap-
propriate computation performed simultaneously with a
minimum of additional manipulation. The design is so made
that the computation is started as if¢, <sec ¢, and a setting of
the slide is made. The indicator is then used to read s. If in
reading s the hairline of the indicator falls off the left end of
the sec, scale, then ¢, > sec ¢ and the hairline of the cursor is
moved to a different setting to read the value of u from the
sec, scale. No resetting of the slide is necessary.

For the determination of areas of horizontal regions on the
ground plane, the quantity N is the same as in equation (10).
The value of a* of equation (24) can be computed using the
sec; and C scales. The value of ¢, may be computed using the
tangent scale, the C scales and, according as y, tan ¢ is positive
or negative, the ¢! or the ¢* scale. The only new requirement
for this computation is a set of scales by which

N2g*
=0




19
can be computed at one setting. To arrive at such a set of
scales; we take the logarithms of both sides of (35) and divide
the resulting equation through by three to obtain, after rear-
rangement, the following equation
2
3

This may be further rearranged to yield the equivalent equa-
tion

‘ (4+ log c,)——(% log N)-}-(% log A)-—(4+% log a*) =0

log ¢g—5 log N+% log A—--% log a*=0-

The  addition and subtraction of the numerical constants
(whose algebraic sum is zero) is calculated to position the
scales in such a way that the desired ranges fall within the 17.5
inches spanned by the longest of the other scales, and at the
same time to relate the scale for ¢, to the register line in the
same way that the C and D scales relate to the register line.
The four layout functions for these special scales are then:

a*:D=4+% log a*
eg: D=4+ log ¢

N:D=—§— log N
A:D-—-—:l,’— log A

FIG. 8 shows the arrangement of these four new scales.

These scales will bear the respective names K, C, J, and Q.
The K scale is so called because it gives the cubes of quantities
on the Cscale. The J scale gives the square root of the cube of
quantities on the E scale. The Q scale give cubes of quantities
on the E scale. The symbol Q denotes that it is used for
quadrature (determination of area) in the photointerpretation
application.

When flying height and ground distances are in meters, the
computed value of A is in square meters; when flying height
and ground distances are in feet, the computed value of 4 is in
square feet. In the latter case it may be desirable to have the
area in acres. The number of acres equals the number of
square feet divided by 43,560. This operation may be accom-
plished by placing alongside the Q scale another scale with the
scale function

D=% log 43,560—{-% 108 Aueres

This scale will be called the Q, scale. With both scales present
the area is computed simultaneously in both square feet and
acres.

The Q, scale does not yield the area in acres if flying height
and ground distances are in meters.

The only additional scale required for the one-setting com-
putation of any one of the four quantities P, 4, B, or C from
the other three when ‘

P=ABC, (63)

is an inverse scale to cooperate with the C and D scales. This

will be a scale running in the opposite direction to that of the C

scale and having its unit at the same longitudinal position on
the slide as that of the C scale. To be able to stay within the
overall length of the other scales, this should be a seven cycle
scale running from 10,000 at its left end to 0.001 at its right
end. This will be called the CI scale.

The scale function for this inverse scale will then be D=4 —
log B
where B is the variable to be used on this scale. The fact that
the one step solution of equation (63) is possible with the D,
C, and CI scale follows from the fact that the relation
(4+lw <) — U _log ¢)+(4+IW E)__(4+Ioo><)=0
s equivalent to

“"’<-‘—“"’B)+log C—log P=0
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which is the basis for the use of these scales on the ordinary
slide rules. The vector diagram is shown in FIG. 9. As will be
seen later, space limitations will relegate this scale to the
reverse side of the slide. With this arrangement it becomes a
bit more convenient to use it in conjunction with the C scales
which are on that side.

To compute at one step any one of the four quantities Q, 4,
B, or C from the other three when

A2C?
o=

requires a scale with a cycle half as long as that of the C scales
and with its unit at the same longitudinal position as the unit of
the C or D scale. The slide rule is designed so that most opera-
tions of the form AB/C, ABC, (A sec 6)/B end up with an
answer on the body of the rule. To avoid the transferring of
numbers and operator errors, it is therefore desirable to place
such an additional scale on the body of the rule. Certain other
advantages accrue from doing this. One is that the presence of
such a scale permits direct reading of squares, square roots
and of sec26 and tan’# without having to bring the slide into
play.
The scale function for the one new required scale is

D=4+% log @

In keeping with usual slide rule terminology this will be called
the A scale. The combination of scale functions which shows
that the desired computation can be performed at one step is

(4--log A)— (4-+1og B) -+ (41og C) —(4+% log Q)=0
which, after some rearrangement becomes
logQ=2logA—2logB+2logC.

A diagram of the vector relation is shown in FIG. 10. The vari-
able 4 will be set on the D scale, the variables B and C on the C
scale, and the variable Q on the A scale. ]
FIG. 11 is a diagram showing the way in which 4%, B, sec?
8, tan2 § can be computed without hringing the slide into play.
The relation

4+% log z— (4-+log tan 8)=)=0
is equivalent to x=tan? #; the relation
4—}-% log z— (4+4log see ¢) =0
is equivalent to z=sec? ¢; the relation
4+% log o~ (4+log ) =0

is equivalent to z=y? or y=1/7; the relation
4+logtanf— (4+logy)=0

is equivalent to y=tan o7 § = 07¢ {an 34 the relation

4+lngsec¢)_(4+logy)=0

is equivalent to y =sec ® or ® =arc sec y.

To avoid having to turn the rule over and back, a second D
scale is put above the tangent scale on Side 2 of the Body. In
squaring numbers and taking square roots, greater accuracy is
obtained and greater ease of operation will be experienced if
the 4 and D scales are used rather than the K and J scales. To
enable the photointerpreter to dispense with the general pur-
pose slide rule which he would normally require, it is sufficient
to put on the Slide, Side 2, ¢ B scale identical with the 4 scale.

In order as much as possible to avoid turning the slide rule
over for any one operation, the scales have been grouped on
the two sides in much the way as shown in FIGS. 6, 7, and 8,
with the scales of FIGS. 6 and 8 on Side 1 and the scales of
FIG. 7 on Side 2. The two additional scales, the CI and 4
scales would preferentially be on Side 1, the A scale on the
body and the CI scale on the slide. However, due to limitations
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of space on Side 1, these scales are put on Side 2. A showing of
the complete layout is shown in FIGS. 13, 134, 13b, and 13c.
The specifications for the final design call for the J, 9, and O,
scales to be shifted to the left from their position in this FIG;
the three are moved as a group until the one on the J and 0
scales is at the register line.

The Slide Rule is shown in FIG. 13, 134, 13b, and 13c. It
consists of a body 1 (or stock) constructed of two longitudinal
rectangular pieces held by end brackets not shown in such a
way as to leave between them a space in which the slide may
move longitudinally to assume various positions with respect
to the body. An indicator (sometimes called a cursor or
runner) encircles the body and slide in such a way as to bear
firmly on the body and yet be free to move longitudinally
thereon. The flat exposed lateral surfaces 7 of the body and
the slide bear longitudinal scales graduated according to vari-
ous mathematical functions. These scales are intersected at
right angles by the hairlines of the indicator.

As shown in FIGS. 13, the Body, Side 1, bears on its upper
portion a secant scale 9, called the sec, scale, bearing graduate
marks 50 graduated according to logarithms of the secant
function, with angles from 0.5° to 89.5°, and a numerical scale

10 called the D scale, bearing graduate marks 49 graduated
from 0.0001 to 1,000, according to logarithms of numbers. 25

The secant scale bears a second set of numbers 11, ranging
from 89.5° to 0.5°, which are the complementary angles to
those of the secant scale. This second set of numbers allows
the same set of graduations 50 to serve as marks for a cosecant
scale, called the csc; scale, graduated according to the
logarithms of the cosecant function.

The Body, Side 1, bears on its lower part three scales, a nu-
merical scale 12, called the J scale, bearing graduate marks 58
graduated according to two-thirds the logarithms of numbers
from 1 to 10,000,000, a second numerical scale 13, called the
O scale, bearing graduations 59 graduated according to one-
third the logarithms of numbers from 1 to 10", and a third nu-
merical scale 14, called the Qa scale, bearing graduate marks
60 graduated also according to one-third the logarithms of

22

representing the logarithms of the tangent function and a
second set 24 of angles from 89.5° to 0.5° representing the
logarithms of the cotangent function. The scale 23 is called
the tangent scale and the scale 24 the cotangent scale.

The Body, Side 2, bears on its bottom part two sets of gradu-
ate marks 54 and 55. The first of these is double numbered
with one set of numbers 25, which is called the ¢* scale,and a
second set of numbers 26 which is called the ¢! scale. The
range of the C scale is from 1.001 to 100 and the range of the
¢! scale is from 0.999 to 0. The ¢* scale 25 (read ¢ plus scale)
is graduated according to the logarithm of the function ¢* —1
and bears graduations which are all at least unity. Specifically,
the number on the ¢ scale at any point is obtainable by adding
1 to the number on the D scale 22 at the corresponding lon-
gitudinal position on the slide rule. The ¢* scale 26 (read ¢
minus scale) is graduated according to the logarithm of the
function 1 — ¢! and bears graduations which are all less than
unity. In particular, the number on the ¢’ scale at any point is
obtainable by subtracting from 1 the value at the correspond-
ing point of the D scale. The remaining scale 55 on the bottom
part of the Side 2 of the Body is called the ¢~ scale (read ¢ star

.scale) and bearing numbers 27 graduated from 1.001 to 100

according to one-half the logarithm of the function (¢~)2—1.
In FIG. 13c, the Slide, Side 2, contains four graduated
scales, two ¢ scales 56 and 87 bearing numbers 28 and 29,
respectively, a CI scale 30 which is essentially a C scale
reversed, but covering the range 10,000 to 0.001, of numbers
30 and a B scale 45, which duplicates on the Slide the 4 scale

30 21 which is on the Body and bears numbers 31 identical

thereto. The scale 57 bearing graduations 29 is called X scale
in shifted scale embodiment.

To determine an angle from its cosine or secant is normally
not considered good computing practice. This is done in for-

35 mulas (8) and (12), where s or u is determined from its secant.

These auxiliary angles are used solely for the determination of
¢,” and ¢,~. A mockup was used to verify the conclusion that
the valies of s and u determined from this scale yield
adequately accurate determination of ¢,” and ¢, = for the

numbers from 0.0001 to 10?°, but with its unit position shifted 40 photointerpretation problems.

longitudinally along the Body with respect to the Q scale.

In FIG. 13q, the Slide, Side 1, has on its surface four sets of
graduate marks 51, 52, 61 and 62. The first of these sets is a
logarithmically graduated numerical scale numbered with one
set of numbers 15, ranging from 0.0001 to 1,000, and another
set of numbers 16 ranging from 1 to 10,000,000. The gradua-
tions together with the numbers 15 constitute the E scale and
the graduations with the numbers 16 constitute a scale which
is called a C scale. The E scale may be regarded as an exten-

sion of the C scale and is to be used for certain large quantities 5

when the use of the C scale would ordinarily be indicated. The
second set of graduate marks 52 bears two sets of numbers 17
and 18. The graduations with the set of numbers 17 represent
‘angles from 0.5° to 89.5° and constitutes a secant scale identi-
cal with the scale 9 while the graduations and the second
(upper) set of numbers ranging from 89.5° to 0.5° constitute a
cosecant scale 18 identical with 11. The scale 17 is called the
sec, scale and the scale 18 is called the csc, scale. The third set
of graduate marks 61 is appended with numbers 19 numbered
from 0.001 to 1,000 and graduated according to one-third the
logarithms of numbers. The scale so constituted is called the K
scale. The fourth set of graduations 62 is appended with num-
bers 20 numbered from 0.0001 to 1,000 and graduated ac-
cording to the logarithms of numbers. So numbered, this scale
is a duplicate of 16 and is, therefore, also called a C scale.

In FIG. 13b, the Body, Side 2, bears on its top part three sets
of graduations 47, 48 and 53, The first of these is a scale 47
graduated according to one-half the logarithms of numbers 21
having a range from 0.000,000,01 to 1,000,000. The second is
a scale 48 graduated like the C scales with the logarithms of
numbers 22. This scale, whose range, like the C scales’ range,
is from 0.0001 to 1,000, is called the D scale in accordance
with established terminology. The third set of graduations is

double numbered with a set 23 of angles from 0.5° to 89.5°, 75

The conclusion reached by operating with the mockup is
supported by the following error analysis.

In the formulas .
= \/ 1 + tan2

—\/1—}-———» tan? u (14)

which are used for the determination of cy and ¢, -, the ratios
IA y|/l and |A x| /I are both less than 1, being the reciprocal of
the ratio of the length of a line segment to its projection on
one of the axes. Since Ax, /, and u enter into ¢,” in the same
way as Ay, /, and s enter into ¢,”, one analysis will serve for
both.

Let 8 ¢,= be the portion of the error inc contrlbuted by the
ill- determmanon of s. Then from (11)

acy ds— tan s sec? s

0 \/l —I—A—— tan? s

where ds is in radian measure, )
The radical in the denominator is greater than or equal to 1
and, as remarked above, /A y/ /I is less than or equal to 1 so

(11)
and

2
Acy Ay —-ds

65 that one gets the inequality

|8c,*| < | tan s} - (sec?s) - |ds]| -

The error in reading s is approximately inversely propor-
tional to the change of the layout function per degree of s. The -

70 differential of the layout functionis

dD=d(4+logo sec s) -—1?—1—0 d(logo sec s)

or
tan s ds

dD="553
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where D and dD are in layout units of 2.5 inches. This gives
the change in the layout function for a change of ds radians in
s5. This may be related to the reading error as follows. If gradu-
ate marks are made no closer together than 0.030 inch, the

operator will make no mistake larger than about one-fifth of 5

the corresponding interval. Since D is in layout units of 2.5
inches each, 0.030 inch corresponds to 0.012 of a layout unit,
and one-fifth of that corresponds to 0.0024 layout unit. Thus
the error in reading the position of the indicator may be
presumed at its very worst not to exceed 0.0024 layout unit.
Thus, .

0.002421/2.304 tan s ds
or
ds<0.00553 cot s, (66)

which shows just how bad the determination of a s from the se-
cant (or cosine) may become in the neighborhood of 0°. When

15

the error is expressed in degrees it is about 57.3 times the 20

error in radians so that the error in degrees is less than or
 ‘equal to 0.317 cot 5. At 10°, the first graduation beyond 0°,
" this is nearly 2°. At 0° the formula yields an infinite upper
bound, but the error will be less than 10°, which is marked by a
graduation.
- 'When (66) is combined with (65), the inequality

dc,~<0.0056 sect s

results. Since it is only between 0° and 30° that the ill-deter-
mination of s is a matter of concern, the largest value of sec? s
under consideration is 4/3. Thus, in the range under con-
sideration,

dc,~<0.0076.

Since ¢,” is always at least 1, this shows the ill-determination
of s changes ¢,™ by no more than 0.8 percent. Similarly, the ill-
determination of u induces no more than an 0.8 percent
change in'c;".

The import of this result is that even though the error in
" ‘reading s may be quite large, it does not contribute signifi-
cantly more to the total error than measurement errors and
the other setting and reading errors.

In any lengthy computation, regardless of the care with
which the formulas are chosen, if there are sets of variables
which differ widely in the magnitudes, the person doing the
computation may organize the operations badly unless given
very specific instructions. This is particularly true of a slide
rule on which the decimal point is to be automatically set. A
scaling study of each-formula must be made and in many in-
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stances a detailed organization of the order of computation

made. To keep. the length of the slide rule to a minimum, it is
necessary to organize the computations so that all quantities
numerically large will be set on or read from scales designed to
accommodate these values. Thus, object space dimensions
and ground coordinates when given in feet or meters should
normally be set on or read from scales which will accom-
modate. large ‘values such as the flying heights, ground
distances between objects, lengths of runways, etc. On the
other hand, quantities which represent the dimensions from
the picture, such as image size, coordinates of image, etc., are
small, and should be set-on scales designed to accommodate
small values.

- A person might avoid large values for the object space if
kilofeet (1 unit = 1000 feet) or kilometers are used, reducing
the data and the end product to values in the same range, but
there are other intermediate quantities which must be com-
puted. A great amount of freedom may be exercised in choos-
ing'just what the intermediate computations are to be. Thus if
the product

F=abcd

is; to-be ‘computed by paper and. pencil methods, the person
doirig-the computing has the choice of any one of 15 essen-
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tially different correct ways of arranging the multiplicaﬁon of
four numbers a, b, ¢, and d; viz,

a(b(cd)) a(c(bd)) a(d(bc)) bla(cd)) b(c(ad))
b(d(ac)) cia(bd)) c(blad)) c(d(ab)) d(a‘nt’
yraf® ylgab)) (ab)(cd) (ac)(bd) (ad)(bc)

The number of ways increases appallingly as the number of
factory increases. For theoretical work there is no preference
of one over the other since the actual computation is not to be
carried out, but only symbolized by abcd. For practical com-
putations on a slide rule it makes a great deal of difference,
especially if the operator is to be relieved of the necessity of
setting the decimal point after each step. Suppose a and b are
very large and c and d are very small, say a = 16,300, b =
18,460, c=0.0123, d=0.372. The slide rule multiplication of
¢ by d leads to a product 0.00458 and the multiplication of a
by b results in a product 301,000,000 (to three significant
figure accuracy). The product of all four numbers is then
1,380,000, which falls between the largest previous product
and the smallest previous product. To accommaodate all the
setting and products on a single scale having only complete cy-
cles beginning and ending with powers of 10 would require a
range from 1.00 X 10¥ to 1.00 X 10° or a range of 12
loganthmlc cycles. If, however, the slide rule multiplication is
done in a different order, say ac times bd, the products ac and
bd are 200, and 687, so that abcd is computed as the product
of two moderate sized numbers. To accommodate all opera-
tions by this procedure, the scale need merely cover values
from 1.00 X 102 to 1.00 X 107 which can be done with nine
logarithmic cycles. By proper choice of the computing .
technique, the number of cycles was cut by one-fourth from
the previous number.

When more than four factors are involved in multiplication
or in combined multiplication and division, the ordering
‘becomes much more critical. The formulas for the solution of
the photointerpretation problems as formulated for slide rule
calculation involve as many as six factors which can cause
considerable difficulty in a fixed decimal point operation un-
less the order of operation is carefully chosen. This will be il-
lustrated in what follows below. :

One principle which contributes much to the ability to
establish reasonably short scales for the photointerpretation
problems, even through some of the variables have quite long
ranges, is the *“proportionality principle.” This principle states
that whenever

alb=cld=e[f= ...,

then any two identical logarithmic scales can be moved into
such a relation with each other that g,c,e,... of the one scale
are all simultaneously against the respective numbers b,d.f,...
on the other.

This principle was used to group the terms of the basic for-
mulas into subcomputations in such a way that quantities of a
given magnitude always fall onto a scale designed to accom-
modate them.

We illustrate the cited-application of this principle by a nu-
merical example. The computation of

7, (16,000) (1.04) (0.214)
o (0.721) (21,300)

(18,460)
(3.04)

might be broken down into three steps as follows:
The first step solves for the number @, by means of
‘ ' (1.04) (0214) @ 0214
Q=""""g1 T 1040751
The proportion shows that Q, is small (about 0.3). The second
step solves for a number Q, by means of

18,460 @

- __ @
"22_21,300Q1 18,460 21,300

The proportion shows. Q. to be also small (less than Q;): The:
third step solves for the number L from

16,000 Q_
L==35¢ Qs or

3.04
16,000




3,568,922

25

This proportion shows that L is large (larger than 1,000).
Thus. for the last two computations the numbers 18,460;
21,300; 16,000; and L should be set or read on one scale
whereas 3.04; 2.14% 0.721; 1.04; Q, and (, are to be put on
other scales which have quite a different range of values. It is
evident then that this particular numerical calculation could
be done with a conibination of three scales, each-having about
three cycle range.
If this type of grouping is not done, combinations such as

(16,000) (18,460) and- 0.214

0.721 ) (21,300) (3.04)
may occur, which for our numerical example, would demand a
scale with a range extending at least from 3.31 X 10" up to
3.00 x 108 if decimal points are to be automatically set. If only
complete logarithmic cycles are to be used, this means 16 cy-
cles or more would be needed to be sure of never running off.
the end of the rule. Obviously, a rule of 16 cycles with cycles
long enough to give two to three figure accuracy would be too
long to be manageable. In our numerical example, the 2.5 inch
cycle which we use on the Slide Rule, shown in FIGS. 13, 13aq,
135, and 13¢, would require a 40 inch scale length for a badly
grouped computation.

Greater difficulty is experienced in finding the correct
groupings when the terms are functions such as sec ¢, tan ¢, csc
t, cot ¢ and functions such as ¢, ¢, and ¢~ whose sizes depend
on the geometry of the relation between the photograph and
the object space as well as the particular locatioii of the object
in the object space and its images’ location in the photograph,
especial attention Has to be paid to those trigonometric func-
tions which approach zero simultaneously or become infinite
simultaneously as the angle varies. For example, as ¢ ap-
proaches zero both csc ¢ and cot ¢ become infinite in such a
way that their ratio approaches 1. Also, as ¢ approaches zero
the variable’c= 1 + (y cot t)/f becomes infinite in such a:way
that the ratio of T to either cot ¢ or csc ¢ approachesy/f. With
these and similar considerations, the computing formulas have
been formulated so that there will be relatively few cases
where the results go off the end of the rule during the course
of the computation. If the final product or quotient goes off
the left end of the rule, then the answer is effectively zero, a
situation which will not normally occur except in the problem
of determining object space coordinates of a point. If the final
product goes off the right end of the rule, this should mean
that the object is so close to the horizon that the error in'mea-
surement overshadows the measurements themselves, and the
determination is unreliable by any method: If the reading
point for ¢!, ¢* or ¢~ is off the left end of the corresponding
scale, then the desired value is effectively 1.00. If the reading
point goes off the right end of the ¢* or the ¢~ scale, then the
desired value, which is 2 100, may be read from the D scale.
The value 0 for ¢! in the relation ¢'= 1 — (y tan t)/f occurs
when the point (x, y) is on the horizon. For points above the
horizon ¢! is negative, a case which will rarely if ever occur in
the application. If such a case should occur, one may find ¢*
from the value of ¢*, since ¢! = 2 — ¢*. For —¢! 2100, one may
read ¢! =—c*from the D scale with slide rule accuracy. If for
any of the variables, the reading point is beyond the end of the
D scale, the quantity has a numerical value > 1000. This will
normally not happen if the special methods are used for tilts
near 0° or 90°. If the object is too close to the horizon the
value of ¢! will be so close to zero that insufficient significant
figures are obtainable from the ¢’ scale. In this case, the spe-
cial methods described above should be used.

Since a great many of the computations may be for situa-
tions in which either the y is considerably less than the focal
length or the tangent of the tilt is nearly 0, the range of these
special scales will frequently include values down to 1.001 on
the ¢* scale and up to 0.999 on the ¢’ scale. For computation
of values in the range for ¢* between 1.01 and 1.001 and for ¢!
in the range of 0.990t0 0.999 it is possible to use the D scale,
but with some mental calculation on the side. This requires
shifting the slide to the right by an integral number of cycles,
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resetting the value of y against the shifted C scale, reading the
value from the D scale and moving the decimal point to the
left by as many positions as the number of cycles which the C
scale was shifted. The value of ¢* is then | plus this adjusted D
scale reading and the value of ¢' is 1 minus this adjusted D
scale reading. In order to avoid frequent manipulation of this
sort, a four-cycle rule was made with the ¢!, c*, and ¢~ scales
shifted to the right by one cycle. This necessitated shifting the
lower C scale on side 2 one cycle to the right relative to the
upper C scale. Such a shift in which the ¢!, ¢*, and ¢~ and
lower C (X scale in FIG. 13) scales are moved as a group, does
not affect the computation excepting to place the reading
point in a more favorable position. This allows the rule to be
shortened without danger of running off the end of the scales.
The amount of shift is related to range and:for the desired
range it should be probably in the order of one or two cycles of
the C scale. Only experience can show what the most ap-
propriate shift will be in order that the computations required
for the specific work have a lower probability of giving
readings off one or the other end of the scale. It is clear, how-
ever, for low tilt photography, a design whiclh leaves out the
range from 0.990 to 0.000 of the ¢! scale (and 1.010 to 1.001
on the ¢* scale) is undesirable. Since the shifted C scale can no
longer operate in the other computations as previously set
forth, this scale should be given another designation. The shift
of these scales in the preferred embodiment is shown in FIGS.
13; 13a, 13b, and 13c.

There is for the four-cycle slide rule one additional change
which must be made in the equations. The equations given for
the J, Q, and Qa scales are such as to move the left ends of the
J and Q scales over to the register line which passes through
0.0001 on the D scale. When the two leftmost E scale cycles
are cut off, these must be moved back to the right. Otherwise,
areas less than 106 sq. ft. (about 23 acres) will be cut off the
scale. The J, Q, and Qa scales can be moved as a unit longitu-
dinally without affecting any of the computatioris as long as
they maintain their relative relations. Fortunately, the most
appropriate shift just adds two layout units to the layout func-
tions. This shifts the position of the J scale by a whole number
of cycles of the J scale and shifts the positions of the Q and Qa
scales by a whole number ofitheir cycles. '

The use of kilofeet (or kilometers) instead of feet (or me-
ters) for the flying height is desirable in aerial photography.
This permits the elimination of the E scale number 16 from
the E and C scale 51. The E numbers removed from this scale
would not affect the computations insofar as it applies to the
calculation of N for use in all problems except that of horizon-
tal area. Even then, it remains true apart from the fact that the
value of N secured from the C scale would be 0.001 times the
number to be set on the J scale in computing the area, all other
quantities being the same. It is possible to compensate for this
factor by merely renumbering the J scale using numbers
1/1000 times their numbering as shown in FIGS. 13 and 13a,
which apply to the seven cycle rule with an E scale. That is to
makKe settings of kilofeet directly on the J'scale, the numbers: -
should be changed so that each is the present number divided
by 1000. In the preferred embodiment, the range will be from
0.001 to 10,000 with the graduations unchanged in printing,
merely labeled differently. That is, 1/1000 = 0.001, number
10 becomes 10/1000 = 0.01, number 100 becomes 0.1, etc.,
to the number 10,000,000 which becomes 10,000. This makes
all the necessary compensations to allow reading of square
feet on the Q scale and acres on the Qa scale.

In those instances where the actual heights or lengths of ob-
jects which have a photographic dimension less than 0.01 inch
are to be determined, the C scale may be extended to the left
of 0.01. For a 10 inch rule having essentially four C scale cy-
cles, it is preferred to take the C and D scales at least down to
0.005 unit, rather than to 0.01, especially in the case where
the measurements are to be made in inches on the photo-
graph. This would mean that the smallest measurement (Ax,
Ay, or 1) that could be used would be 0.005 inch without
manipulating decimal points. This extends the C scale to the
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left by about 0.301030 times the layout unit beyond C= 100.

For easy reading, the tangent scale should go from 0.5° to
89.5°. This extends to the left of 0.01 on the D scale, but not to
the left of 0.00S. It also extends it to the right beyond 100 on
the D scale by 0.059142 times the layout unit.

For maximum accuracy, the ¢* scale should be extended to
the left at least to 1.005 and the ¢! correspondingly to 0.995.
This gives the same left end point as the C and D scales. No ex-
tension to the right beyond c* = 100 is necessary.

The A and B scales may be shortened to the range 0.0001 to
10,000.

For easy reading, the secant scale should go to 89.5 ® which
extends the secant scale by 0.059158 times the layout unit
beyond the 100 point on the C or D scale.

If the C and D scales are extended to the left to 0.005, then
it would also be advantageous to extend the CI scale to the left
1o 200 (instead of 100) which is 0.301030 layout unit to the
left beyond 0.01 on the C scale (that is, at 0.005 on the C
scale).

It will become apparent from the formulas described below
that all the formulas can be written as proportions. That is, the
" formulas can be arranged so that the relative position of the
variables in them suggests the position of the variables on the
slide rule. This will serve as a mnemonic or memory aid. For
example, for computation of the form

_ab
which uses two adjacent scales, one from the slide and one

-~ from the body, the formula may be so arranged that it appears
as a proportion

In a specific embodiment such as for computing horizontal
distance, the formulas are arranged as follows:

Formulas:
L _sect tant_ 1—c,
Step 1: =N Step 2: =
Usual case:
Step 3: 5 t_secs Step 4: tan s__ /(¢ *)7—1
C, 1 l AY
LA c1_ ¥
Step 5: =k Step 6: N=I
Unusual case:
.sect 1 Ctan u V(e *)2—1
Step 3A: o “seo Step 4A: R A v
L1 lx* .secu_ lz*
Step. 5A: PR Step 6A: = ="

The scales therefore on the slide rule have been arranged, in
keeping with the proportionality principle, so that all the nu-
merators appear on scales on the body of the slide rule and all

. the denominators appear on scale on the slide of the slide rule.
The proportionality principle is used to combine the addition
and subtraction of the logarithms of three of these functions to
mechanically derive the logarithm of a fourth in almost all
cases. Because the location of the logarithms of the value of
the function ‘is labeled with the value of the variable, the
settings and readings are made directly with the values of the
variables themselves, obviating the necessity of having tables
of logarithms and of the functions.

The operation of the rule of FIGS. 13, 13a, 13b, and 13¢
may now be given. The unknown N is solved by equation (10);
N is found in every set of equations for various quantities ex-
pressed above and for all points. Once N is computed for the
photograph it applies to all the specified dimensions to be
computed from the photograph. The slide is shifted to the left
(or to the right) until the focal length (f) on the D scale 10 of
the body side 1 is in register with the flying height (H) on the E
scale 16 of slide side 1. The cursor is then shifted until its hair-
line is at (¢) the tilt angle on the sec, scale 9 of body side 1. At
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the point where the hairline of the cursor cuts the E scale 16 of
slide side 1, the photograph invariant N is read. In the suc-
ceeding computations the following step by step procedure is
followed using the cursor wherever necessary to obtain align-
ments for settings or readings. For computing for horizontal
length:

Step 1. Use Side 1 to compute N, as above.

Step 2. Use Side 2. Set ¢ (tan scale 23 on body side 2)
against f (C scale 28 on slide side 2) and against y, (C
scale 29 slide side 2) read ¢, (¢! scale 26 body side 2 if y >
0 or ¢ * scale 25 slide side 2 if y < 0). If y=o or if the hair-
line of the cursor falls to the left of the left end of the
reading take ¢,= 1.

Step 3. Use Side 1. Set ¢ (sec, scale 9) against ¢, (C scale 15)
and against 1 (C scale 15) read s (sec, scale 9). If the 1 on
the C scale 15 falls beyond the left end of the sec, scale 9,
there is no s. In that case go directly to Step 3A and con-
tinue that sequence. If s can be read, however, go to Step

Step 4. Use Side 2. Set 5 (tan scale 23 body side 2) against
(Cscale 28) and against y (C scale 29) read ¢,* (¢~ scale
27 body side 2). .

Step 5. Use Side 1. Set (D scale 10) against ¢, (C scale 15)
and against ¢,* (Cscale 15) read y~ (D scale 10).

Step 6. Use Side 1. Set 1 (D scale 10) against N (£ scale 16)
and against y~ (D scale 10) read L (E scale 16).

Step 3A. Use Side 1. Set ¢ (sec, scale 9) against ¢, (C scale
15) and against 1 (D scale 10) read u (sec, scale 17).
(Note that the setting is the same as for Step 3. Only the
reading is different.)

Step 4A. Use Side 2. Set u (tan scale 23) against (C scale
28) and against x (Cscale 29) read ¢, * (¢~ scale 27).

Step SA. Use Side 1. Set (D scale 10) against ¢, (C scale 15)
and against cx= (Cscale 15) read x~ (D scale 10).

Step 6A. Use Side 1. Set u (sec, scale 9) against N (E scale
16) and against x= (D scale 10) read L (E scale 16).

For computing vertical height:

Step 1. Use Side 1 to compute N as above.

Step 2. Use Side 2. Set ¢ (tan scale 23) against f (c scale 28)
and against y, (C scale 29) read ¢, (from ¢! scale 26 if y,
> 0 or from c.. scale 25 if y, > 0). If y, =0 or if the hairline
of the cursor falls to the left of the left end of the reading
take ¢, = 1. 1f/Ay/Z |Ax] go to Step 3; if/Ax/>/Ay/go to
Step 3A.

Step 3. Use Side 2. Set ¢ (cot scale 24) against f(C scale 28)
and against y, (C scale 29) read ¢, (¢, scale 25if y > 0, ¢!
scale 26 if y < 0). If y,=0,take c= 1.

Step 4. Use Side 1. Set Ay (D scale 10) against ¢, (C scale
15) and against ¢ (cscz scale 18) read Ay* (D scale 10).
Step §. Use Side 1. Set ¢, (D scale 10) against N (E scale

10) and against y~ (D scale 10) read 4 (Escale 10).

Step 3A. Use Side 1. Set Ax (D scale 10) against ¢, (C scale
15) and against ¢ (secz scale 17) read Ax™ (D scale 10).
Step 4A. Use Side 1. Set Ax™ (D scale 10) against x, (C scale

15) and against f(C scale 15) read p (D scale 10).

Step 5A. Use Side 1. Set 1 (D scale 10) against N (E scale
16) and against p ( D scale 10) read 4 (E scale 10).

For computing horizontal area: ’

Step 1. Use Side 1 to compute N as above.

Step 2. Use Side 2. Set ¢ (tan scale 23) against f (C scale 28)
and against y, (C scale 29) read ¢, (c' scale 26 if y > 0, ¢,
scale 25ify < 0).If y=0take ¢,= 1.

Step 3. Use Side 1. Set 1 (D scale 10) against a (C scale 15)
and against ¢ (sec, scale) read a= (Cscale 15).

Step 4. Use Side 1. Set N (J scale 12) against ¢, (Cscale 20)
and against a™ (K scale 19) read A (Q scale 13), or 4,cres
(Q, scale 14) when object space coordinates are in feet.

For computing object space coordinates:

Step 1. Use Side 1 to compute N as above.

Step 2. Use Side 2. Set t (tan scale 23) against f (C scale 28)
and against y (C scale 28) read ¢, (from ¢! scale 26 if y >
O orc, scale 25if y < 0). If y=0, take ¢, = 1.00.

Step 3. Use Side 2. Set ¢ (cot scale 24) against f(C scale 28)
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and against y (C scale 29) read ¢, (from c, scale 25 if y>
0 or from ¢! scale 26 if y < 0). If y < 0 and the hairline for
reading ¢, falls to the right of 0 on the ¢! scale 26, take ¢,
= Z — ¢ where c¢* is read from the c* scale 25 at the hair-
line. This makes'c, negative and Y will also be negative.

Step 4. Use Side 2. Set ¢ (tan scale 23) against 1 (C scale 28)
and against| ¢, (Cscale 28) read ¢ (D scale 22). Give C
the same sign as ¢,

Step 5. Use Side 1. Set ¢, (D scale 10) against N (E scale
16) and against | x | (D scale 10) read X (F scale 16).
Give X the same sign'as x.

Step 6. Use Side 1. Set ¢, (D scale 10) against H (E scale
16) and against C (D scale 10) read Y (E scale 16). Give
Y the same sign asc, and C.

Although certain and specific embodiments have been
shown, it is to be understood that modifications and improve-
ments may be made to the preferred embodiment within the

- scope of the invention.

For similar formulas modified to retain accuracy when the
tilt angle is near 0 ° or 90 °, for those cases when mathematical
singularities occur at 0 © or 90 ° for the above computations,
the same set of scales and the above type of procedure are ap-
plicable.

It is to be noted in the above procedure that the overall
computations are arranged so' that in almost every step you
enter with three quantities and read a fourth. This minimizes
the number of computational steps required to compute the
desired dimensions. Further, each step of a computation is
performed on a single side of the rule—even though it usually
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may pertain to four quantities. Moreover, the number of in- -

stances that the use of the cursor is required for alignment is
minimized by the proper selection of a similar scale adjacent
to where the reading is taken.

I claim:

. 1. A slide rule for computing the dlmenswns and posmons
of objects appearing on aerial photographs and having a plu-
rality of numerical scales graduated according to a constant
plus a second constant times the logarithm of the numbers as-
sociated with the graduations, and a plurality of function

scales graduated according to some constant plus a setond
constant times the logarithm of the function of the numbers
associated, said graduations operable to compute horizontal
length, height, and object space coordinates, the improved
:scales and improved arrangement of scales, comprising a body
portion, a slide portion movable longitudinally therebetween,
and a cursor positioned to be slidable over said body and said
slide, said cursor bearing a pair of hairlines one on each side,
said hairlines registering with each other; said body on a first
side on its upper portion bearing a scale (50) having double
appended numbers representing angles, one set of said num-
bers (9) denoting a secant function, and said second set of said
numbers (11) denoting a cosecant function, and a numerical
scale (49) appended with a set of numbers (10); said slide on a
first side bearing a numerical scale (51) appended with a first
and a second set of numbers (15, 16), and a second scale (52)
having double appended numbers representing angles, one set
of said numbers (17) representing angles denoting a secant
function and said second set of numbers (18) representing an-
gles denoting a cosecant function; said body on a second side
on its upper portion bearing a scale (53) appended with a first
and second set of numbers representing angles; said first set of
fiumbers (23) denoting a tangent function and said second set
of numbers (24) denoting a cotangent function; said body on a
second side on its lower portion bearing a scale (154) having
double appended numbers, one set of said numbers (25) all'at
least unity and representing a first a function (c*), and said
sécond set'of numbers (26) all less than unity and representing
asecond function (¢!}, and a second scale (55) appended with
a'set of numbers (27) representing a third function (c*).

“-2. A slide rule as set forth in claim 1, wherein said scale (50)
with double appended numbers on said body on a first side has
graduatlons laid out with respect to some appropnate and ar-
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bitrary layout unit in accordance with distances from a re-
gister line, said distances having values of the layout function.

4 +logsect

for values ¢ of the said first set of appended numbers (9)
representing the secant function of the associated angles and
appended to the respective graduations, said second set of ap-
pended numbers each being 90 minus the corresponding

number of the first appended set and representing a cosecant

function; said numerical scale (49) having graduations laid
out with respect to the same said layout unit in accordance
with distances from the same said register line, said distances
being given by values of the layout function

4,‘+logx

for numbers x of the set of numbers (10) appended to the
respective graduations of said scale (49); said numerical scale
(51) on said slide on a first side having graduations laid out
with respect to the same said layout unit in accordance with
distances from a register line on said slide, said distances being
given by values of the layout function

4+logx

for values x of the respective numbers (15) of the set ap-
pended thereto, said second set of numbers (16) appended
thereto being respectively 10* times the corresponding num-
bers of said first set of numbers appended théreto; said second
scale (52) on said slide on a first side having double appended
numbers (17, 18) and bearing graduations laid out with
respect to said layout unit in accordance with distances from
said reglster line on said slide on a first side, said dlstances
bemg given by values of the Jayout function

4+logsect

for values ¢ of the said first set of appended numbers (17)
representing angles, said appended numbers (18) of said
second set being respectively 90 minus the corresponding
numbers of the first set, said second set of numbers represent-
ing a cosecant function; said scale (53) on said body om a
second side on its upper portion being graduated with respect
to the same said layout unit, distances of said graduations
being measured from a third register line aligned with said first
register line, said distances being computed as values of the
layont function

4 +logtant

for numbers ¢ of the first appended set (23) of numbers
representing angles and ‘denoting a tangent function, said
second set of appended numbers (24) representing angles
denoting a cotangent function, wherein each number of the
second appended set is 90 minus the corresponding number of
the first set; said scale (54) on said body on a second side on
its lower portion bearing double appended numbers and hav-
ing graduations laid out with respect to the same said layout
unit according to distances from a fourth register line on said
body on a second side on its lower portion, said fourth register

- line being aligned with other register lines on said body, and
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said distances given by values of the layout function
4+log(ct—1)

for values (c*) of said first set of numbers (25) appended
thereto, said second set of appended numbers (26) represent-
ing values of (¢'), each being 2 minus the corresporiding value
of the appended number (¢*); said second scale (55) on said
body on a second side on its lower portion appended with a set
of numbers (27) representing values of (¢~), said scale being
graduated with respect to the same said layout unit according
to distances from said fourth register line, said distances being
given by the layout function

4+—12'--10g (c*2—1),
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wherein each such said graduation is appended with the cor-
responding value of (c); said scales laid out in said physical
relation to each other and to said body and slide and register
lines thereon being in such physical relation as to enable ready
calculation .of horizontal length, vertical height, and object
space coordinates in a simplified and abbreviated procedure.

3. A slide rule as set forth in claim 2 wherein the scales are
physically laid out in correct physical relation to each other
and to the body and slide as to enable the computation of
horizontal length as expressed by

Ay? tan?
2

and

sec ¢
s=Arc sec ( —4——):
Co

using, in all, six slide rule operations; wherein the scales are
physically laid-out in correct physical relation to each other
and to the body and slide as to enable the computation of ver-
tical height as expressed by

Ay cscit 1
h=H sect, yi cob ¢ yp tan t

using, in all, five slide rule operations; wherein the scales are
physically laid out in correct physical relation to each other
and to the body and slide as to enable the computation of
ground coordinates X and Y as expressed by

z
X=H sec t'l—y T
)
and
sin ¢ (1+y___c;>t t)
Y=H

tant
cos ¢ (I—L —)
!

using, in all, six slide rule operations.

4. A slide rule as set forth in claim 2 wherein said slide bears
a second numerical scale with graduations laid out with
respect to said layout unit in accordance with distances from
said register line on said slide, said distances having values of
the layout function

a+4+logx

wherein a is some number of the order of 1 or 2, and wherein

.the said layout functions for the graduations of the scales of
said body on a second side on a lower portion are altered to
become

a+4log(ct—1)

and

a+4+%log(c™?~1),

the addition of said constant g to the said three layout func-
tions-having the effect of shifting the corresponding said scales
to the right by an amount equal to the number of layout units
represented by the number q, said shift being relative to all
other scales on said body and said slide, and wherein the left
and right end portions of said body and slide may each be
cropped off by an amount in the order of 1% layout units
without materially reducing the range of the values for which
the operations are possible on the slide rule.
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physically laid out in correct physical relation to each other
and to the body and slide as to enable the computation of
horizontal length as expressed by

Ay? tan2

=Hsectl 1+

e

and the computation of intermediate quantities ¢, and s as ex-
pressed by

L

——1— tan ¢
f

s=Arc sec ( )

using, in all, six slide rule operations; wherein the scales are
physically laid out in correct physical relation to each other
and to the body and slide as to enable the computation of ver-
tical height as expressed by

and

HsectAyosct 1

and the computation of intermediate quantities ; and ¢, as ex-
pressed by

c¢=1+? cot ¢

and

c -—1—-— tan ¢
® 7

using, in all, five slide rule operations; wherein said scales are
physically laid out in correct physical relation to each other
and to the body and slide as to enable the computation of ob-
ject space coordinates X and Y as expressed by

X ___H sect z
7 Cy
and
_HC
Cy
and the computation of intermediate quantities ¢,, ¢,, and C as

expressed by

ycott
b

—1-_Y tan ¢
Y s

=147

and
C=C,tan¢,

using, in: all, six slide rule operations.
6. A slide rule as set forth in claim 2 and further operable to
compute object space area of horizontal regions appearing on

.aerial photographs, wherein said slide on a first side bears a

second numerical scale having graduations laid out with
respect to said layout unit in accordance with distances from
said register line on said slide on said first side, said distances
being given by values of the layout function

4+ log x,

for numbers x appended to said second numerical scale on
said slide on said first side; wherein said body on a first side on
a lower portion bears a couplet of numerical scales, one of
said scales of said couplet having graduations laid out with
respect to said layout unit in accordance with distances from
an extended register line on said body on a first side on a lower
portion, said extended register line being aligned with said first

5. A slide rule as set forth in claim 4 wherein the scales are 75 register line on said body on a first side on a top portion, said
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distances being given by values of the layout function

Zlog N

for numbers N of the set appended to the graduations on said
first numerical of said couplet, and a second scale of said
couplet having graduations laid out with respect to same said
layout unit in accordance with distances from said ‘extended
register line, said distances being given by the values of the
layout function

talog A

for numbers A of the set appended to said graduatlons of said
second numerical scale of said couplet.

7. A slide rule as set forth in claim 6 and operable to com-
pute object space area of horizontal regions appearing on aeri-
al photographs simultaneously in square feet and in acres,
wherein said body on a first side on a lower portion bears a
third numerical scale in addition to those of said couplet, said
third numerical scale having graduations laid out with respect
to said layout unit in accordance with distances from said ex-
tended register line, said distances having values of the layout
function

14 log 43,560+ Y% log A,

for numbers A4, of the set of numbers appended to the respec-
tive graduations of said third numerical scale; all of said scales
on said body and said slide laid out in said physical relation to
each other and to said body and slide and to said register lines
thereon being in such physical relation as to enable ready cal-
culation of horizontal length, vertical height, object space
coordinates, and object space area of horizontal regions, said
area computable simultaneously in square feet and in acres,
said calculation being effected in a simplified and abbreviated
procedure. ‘

8. A slide rule as set forth in claim 1 wherein said slide bears
a second numerical scale (57) appended with a set of numbers
(29) graduated according to a first constant plus a seconstant
times the logarithms of the numbers appended thereto, said
first and second constants being the same, respectively, as the
said first and second constants used in graduating the said first
numerical scale (51) on said slide, and wherein said scales on
said body on a second side on a lower portion and said second
numerical scale on said slide are all shifted by an assigned
amount, on the order of one or two cycles of the numerical
scales, to the right relative to the other scales on'said body and
said slide.

9. A slide rule as set forth in claim 1 and further operable to

compute object space area of horizontal regions appearing on .

aerial photographs, wherein said slide on a first side bears a
second numerical scale having cycles of length equal to one-
third of a cycle of said first. numerical scale on said slide on a
first side, and wherein said body on a first side on a lower por-
tion bears a couplet of numerical scales, a first numerical scale
o of said couplet having cycles of length equal to. two-thirds of
a cycle of said first numerical scale on said slide on a first side,
a second numerical scale of said couplet having cycles of
length equal to one-third the length of a cycle of said first nu-
merical scale on said slide on said first side.

10. A slide rule as set forth in claim 9 and operable to com-
pute object space area-of horizontal regions appearing on aeri-
al photographs simultaneously in square feet and acres,
wherein said body on a first side on a lower portion bears a
third numerical scale in addition to those of said couplet, said
third numerical scale having graduations laid out as for said
second numerical scale of said couplet and shifted longitu-
dinally to the right with respect to said first and second scales
of said couplet by an amount determined so that the particular
graduation appended with the number 1 on said third scale is
aligned with that point on said second scale of said couplet to
which the reading 43,560 corresponds

11. A slide rule for computing the dimensions and positions
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embodiment having a plurality of scales graduated according
to a constant plus a second constant times the logarithm of the
numbers associated with the graduations, and a plurality of
function scales graduated according to some constant plus a
second constant times the logarithm of the function of the
numbers associated, said graduations operable to compute
horizontal length, vertical height, object space coordinates,
and area of horizontal regions, the improved scales and im-
proved arrangement of scales, comprising a body portion, a
slide portion movable longitudinally therebetween, and a cur-
sor positioned to be slidable over said body and said slide, said
cursor bearing a pair of hairlines, one on each side, said hair-
lines registering with each other; said body on its first side on
an upper portion bearing a scale (50) having double appended
numbers representing angles, one set of said numbers (9)
representing angles from 0° to 89.5° and denoting a secant
function, and said second set of said numbers (11) represent-
ing angles from 0.5° to 90° and denoting a cosecant function,
and a numerical scale (49) appended with a set of numbers
(10) having values from 0.005 to 100; said slide on a first side
bearing a numerical scale (51) appended with a set of num-
bers (15) having values from 0.005 to 100, a second scale
(52) having double appended numbers representing angles,
one set of said numbers (17) having values from 0° to 89.5°
and representing angles denoting a secant function and said
second set of numbers (18) having values from 0.5° to 90° and
representing denoting a cosecant function, a third scale (61)
being a numerical scale appended with a set of numbers (19)
having values from 0.001 to 1,000, and a fourth scale (62)
being a numerical scale, appended with a set of numbers (20)
having values from 0.005 to 100; said body on a first side on a
lower portion bearing a triplet of numerical scales, a first scale
(58) of said triplet appended with a set of numbers (12) hav-
ing values from 0.001 to 1,000, a second scale (§9) of said
triplet appended with a set of numbers (13) having values
from 1 to 10'%, and a third scale (60) of said triplet appended
with a set of numbers (14) having values from 0.0001 to 105,
said body on a-second side on an upper portion bearing a first
numerical scale (47) appended with a set of numbers having
values from 0.000025 to 10,000, a second numerical scale
(48) appended with a set of numbers having values from 0.005
to 100, a function scale (53) appended with two sets of num-
bers representing angles, a first of said two sets of appended -
numbers (23) having values from 0.5° to 89.5° and denoting a
tangent function, the said second set of said numbers (24)
having values from 89.5° to 0.5° and denoting a cotangent
function; said slide on a second side bearing a first numerical
scale (56) appended with a set of numbers (28) having values
from 0.005 to 100, a second numerical scale (46) appended
with a set of numbers (30) having values from 200 t0 0.01, a
third numerical scale (45) appended with a set of numbers
(11) having values from 0.000025 to 10,000, a fourth numeri-
cal scale (57) appended with a set of numbers (29) having
values from 0.001 to 30; said body on a second side on a lower
portion bearing a first function scale (54) appended with a
first and a second set of numbers, said first set of appended
numbers (25) being all at least unity and having values from
1.001 to 30 and said second set of appended numbers (26)
being all less than unity and having values from 0.999 to
0.000, and a second function scale (55) appended with a set of
numbers all at least unity and having values from 1.001 to 30;
wherein said scales on said body are graduated with respect to
a selected layout unit of the order of 1% to 2% inches accord-
ing to distances from a common register line on said body and
said scales on said slide are graduated with respeci to the same
said layout unit according to distances from a common re-
gister line on said slide, said distances being given by the
respective layout functions

2.3010 +logsect

of objects appearing on aerial photographs and in a preferred 75 for numbers (9) appended to scale (50), said numbers
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representing angles ¢ and denoting a secant function, and said
scale being appended with a second set of numbers (11)

representing complementary angles and denoting a cosecant
function,

2.301 +logx -

for numbers (10) having values x appended to said numerical
scale:on said body on a first side on a top portion,

2.3010+log x

for numbers (15) having values x appended to said first nu-
merical scale (51) on said slide on a first side,

2.3010 +logsec ¢

for numbers (17) appended to said scale (52), said numbers
representing angles ¢ and denoting a secant function and said
scale! bearing a second set of appended numbers (18)
representing angles complementary to ¢ and denoting a cose-
cant function,

2.3010+%loga

for numbers (19) appended to said second numerical scale
(61) on said slide on a first side,

2.3010+log x

for numbers (20) appended to said third numerical scale (62)
on said slide on said first side,

'2.3010+%log N

for numbers (12) appended to a first numerical scale (58) on
said body on said first side on lower portion,

0.3010+ % log 4

for numbers (13) appended to a second numerical scale (59)
on said body on said first side on said lower portion,

0.3010+ % log 43,560 + log A,

for numbers (14) appended to a third numerical scale (60) on

said body on said first side on said lower portion,

2.3010+% log x

for numbers (21) appended. to a first numerical scale (47) on
said body on a second side on a top portion,

2.3010+1log x
for numbers (22) appended to a second numerical scale (48)
on said body on said second side on said top portion,
2.3010+logtan ¢

for numbers (23) representing angles ¢ and denoting a tangent

= function, said numbers appended to a function scale (53) on
said body on said second side on said top portion, and said
function scale (53) being appended with a second set of num-
bers (24) representing angles complementary to ¢ and denot-
ing a cotangent function, :

2.3010+logx
for numbefs (28) appended to a first numerical scale (56) on
said slide on a second side,
-2.3010—log x
for nUmbers (30) appended to a second numerical scale (46)

on said slide on said second side,

2.3010+'2 log x
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for numbers (31) appended to a third numerical scale on said
slide on said second side,

3.0000 +log x

for numbers (29) appended to a fourth numerical scale on
said slide on said second side,

3.0000 +log(c* — 1)

for a first set of numbers (25) representing a function (¢*) and
appended to a first function scale (54) on said body on said
second side on a lower portion, said scale (54) being ap-
pended with a second set of numbers (26) representing a func-
tion (¢7), the respective numbers of said second set being
equal to 2 minus the corresponding numbers of said first set,

3.0000+ % log(c**—1)

for numbers (27) representing a function (¢*) and appended
to a second function scale (55) on said body on a second side
on a lower portion; said scales being in such physical relation
to each other and to the body and the slide that said gradua-
tions are operable to calculate horizontal length as expressed

by
_Hseot 1 [ Aptants
L= f '1_yo tan ¢ 1+ 2

f

and an intermediate value s as expressed by

(rorsmm)

using, in all, six operations of said slide rule; said scales being
in such physical relation to each other and to the body and the
slide that said graduations are operable to calculate vertical
height as expressed by

s=Are sec

he Hf (ys—1p)
(f cos t—yp sin t) (f sin t-+y, cos i)

using, in all, five operations of said slide rule; said scales being
in such physical relation to each other and to the body and the
slide that said graduations are operable to calculate object
space coordinates X and Y as expressed by

_— Hz
X—f cos t—y sin ¢
and
V—H f sin t4y c9s t
feost—ysint

and using, in all, six operations of said slide rule; said scales
being in such physical relation to each other and to said body
and slide that said graduations are operable to calculate area
of horizontal regions as expressed by

A= Mo

T (f cos t—y, sin £)?

using, in all, four operations of said slide rule; said scales being
further in such physical relation to each other and to the said’
body and slide that in the calcuiations of said dimensions and
positions each operation of the slide rule is done using scales
from a single side of the slide rule, the various operations using
the corresponding appropriately selected sides; said scales
being in such physical relation to each other and to the body
and slide that said graduations are further operable as a
general purpose slide rule.

12. A slide rule as set forth in claim 11 wherein said gradu-
ated scales are so physically arranged with respect to each
other and to said body and said slide that in the computation
of horizontal length, L, by said six slide rule operations, each
of said six operations is done as a single step, said six steps
yielding intermediate quantities, N, ¢,, §, ¢,~, [,”, in one case,
and intermediate quantities, N, ¢,, ¥, ¢,~, I;~, in a second case,
and the said horizontal length, L, each of said five inter-
mediate quantities and the said length, L’I, being computed



3,568,922

37

from given quantities and successively computed intermediate
quantities as if by a proportion, said six steps being

Step 1: %_—.%”,
Step 2 JE%} 1..;/_‘0&),
if o Ssec b, if ¢, >sec ¢,
Step 4: @%E—ﬁ:&g;_l, Step 4A: tarz: % 9,_’:;21
Step 5: ;;l:=gl:—:’ Step 5A: é:cl:-—:,
Step 6: %=lyf*’ Step 6A: §S§/ﬁ=%,

with the literal quantities in the numerators being set on and
read from said scales on said body of said slide rule and the
literal quantities in the denominators being set on and read
from said scales on said slide of said slide rule; wherein,
- further, said graduated scales are so physically arranged with
respect to each other and to said body and said slide that in the
computation of vertical height, k, by said five slide rule opera-
tions, each of said five operations is done as a single step, said
five steps yielding intermediate quantities, N, ¢;, ¢, Ay™, in one
case, and N, ¢, Ax™, p, in a second case, and the said vertical
height, A, each of said four intermediate quantities and the
said vertical height being computed from given and succes-
sively computed quantities as if by a proportion, said five steps
being

Stei) 1: %=533 t, |
Step 2: J@}{H=-l-ﬁ93,
if |ayl> |z, if |ayl<laz],
Step 3: g%.t—t=§";—tl: Step 3A: ﬁ—:’=;%,
Step 4: %=?s_a’ Step 4A: A?x;=§,;
Step 5: %:Az*, Step 5A: VA

with the literal quantities in the numerators being set on and
read from said scales on said body of said slide rule and the
literal quantities in the denominators being set on and read
from said scales on said slide of said slide rule; wherein,
further, said graduated scales are so physically arranged with
respect to each other and to said body and said slide that in the
computation of said object space coordinates, X and Y, by said
six operations of said slide rule, each of said six operations is
done as a single step, said six steps yielding intermediate quan-
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tities N, ¢,, ¢;, C, and the said coordinates X and Y, each of
said four intermediate quantities and the coordinates X and Y
being computed from given and successively computed quan-
tities as if by a proportion, said six steps being

f sect

e eee—y

N
tan f . l—cy,

Step 1:

Step 2:

Step 3:

with the literal quantities in the numerators being set on and
read from said scales on said body of said slide rule and the.
literal quantities in the denominators being set on and read
from said scales on said slide of said slide rule; wherein,
further, said graduated scales are so physically arranged with
respect to each other and to said body and said slide, that in
the computation of area, 4, by said four slide rule operations,
each of said four operations is done as a single step, said four
steps yielding intermediate quantities, N, ¢;, a=, and the said
area, 4, each of said three intermediate quantities and the said
area being computed from given and successively computed
intermediate quantities as if by a proportion, said four steps
being

Step 1: —I]%=§%%—t
Step 2: ta.; b 1;:‘
Step 3: $=S—Z—i—t
Step 4: Zc%;=(%

with the literal quantities in the numerators being set on and
read from said scales on said body of said slide rule and the
said literal quantities in the denominators being set on and
read from said scales on said slide of said slide rule; and
wherein, further, said graduated scales are so physically ar-
ranged with respect to each other and to said body and said
slide and to said sides of said body and said slide that any one
step in any one of the aforementioned sets of steps requires
graduated scales of only one side of said slide rule, said side of
body and slide bearing all scales necessary for said step, said
various steps of said various computations being computable
on appropriately chosen corresponding sides of said slide rule.
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3,568,922 Dated March 9, 1971
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and that said Letters Patent are hereby corrected as shown below:

Col. 3, lines 40 - 42. Change *® VOZYu to --- v62 -

Col. 4, line 21. Change * co sect ® to --- c03>sect -——

Col. 4, lines 40 - 42. Change % % tan’u ® to --- sztanzu.—-- in the
numerator of the fraction under the radical in (14).

Col. 5, line 24. Change ® l(yf-'b)l 7 to --- l(yt- Yb), “——

Col. ‘5, lines 68 - '6>9. - Change ® Ax(ftant + Vi ¥ to --- Ax{ftant + yt)“f
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Col. 10, line 25. Change® & 0 “;to ~ee §=0 --- )

Col. 10, lines 36 - 38. Change ® Hsec 6x ® to --- Hsec 6§ x <--.

Col. 10, lines 72 - 75. Change ® a ® to Z-- h ---,

Col. 11, lines 12 - 13. Change " y* ¥ to --- Ay¥ ---,

Col. 11, lines 14 - 15. Change ™ Zb-." to --- E't —

Col. 11, lines 16 - 18. Change Ty ®to --- V --- in the denominator of

" the formula.

Col. 14, line 38. Change® ¢ ™ to --- ¢ --- atthe second occurrence.
Col. 17, line 36. Change ® c1 ® to --- € ---s

Col. 17, liﬁe 42. Change ® c:1 ¥ to --- ¢ ---.

Col. 17, line 48. Change ™ c:1 ® to --- ¢~ --- at both instances.
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Col. 17, line 60. Change ® c:l ¥ to --~- c  ~--.

Col. 17, line 64. Change * c1 ® to --- ¢~ ---atboth occurrences.

Col. 17, lines 67-69. Change ® 1+f1"' to --- 1+chott ——-.

Col. 17, line 71. Delete % cott ® at the beginning of the line.

Col. 17, line 71. Change " cl * to --- ¢ ---.

Col. 18, line 20. Char_;ge} . c1 ¥ to --- ¢ ---.

Col. 18, line 21. Change % S,

Col. 18, line 30, Change ® c1 ® to --- ¢ --- at both occurrences.

Col. 18, lines 33 - 34. Change ® %P-G >0 ® to --- ta; L 0 ---at the

beginning of the line.

Col. 18, line 7l. Change ® <:1 B 40 emme C me-a,

Col. 19, lines 72 - 75. Delete in their entirety and replace by:
(¢ +1og A) - (4 -logB)+ (4 +tlog C) - (4 +1log P) =0

is equivalent to
log A - (- log B)#-1log C - log P=0
Col. 20, line 39. Change ® B ® to --- B ---.

Coi. 20, lines 56 - 58. These liries should read :

is equivalent to y.= tan 6 or 6 = arc tan y ; the relation

'4+logsecd§-(4 tlogy)=0

Col. 22, line 8. Change » c1 ® 0 -=- c~ ---.
Col. 22, line 9. Change OIS S,
Col. 22, line 10. Change " R R T
Col. 22, line 15. Change ¥ cl oo --- € ---
Cecl. 22, line i6. Change nocle g e ol
Col.‘, 22, line 17. Change ® W oto --- c-‘ -
Col. 22, lines 21 - 22. Change ® ¢~ '. to --- c¥ --=,
Col. 22, lines 23 - 24. Change ® (cT)2-1 " to --- (c*)2 -1 ---
Col. 22, line 37. Change ™ c. = " to --- c ¥ ---.
_ Yy y
Col. 22, line 37. Change n c}: % {0 --- cx* -
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Col. 22, line 39. Change ® ¢ = ® to --- c * R
. y - y
Col. 22, line 39. Change® ¢ = ® to --- c % ---,
x x
Col. 22, line 50. Change ® ¢ S8 4o el ¢ % oooo,
, y y
Col. 22, line 50. Change a sz B 40 --- ¢ ¥ ~--,
x
Col. 22, line 53. Change ® ¢ = ® to --- ¢ * ---,
_ . y x
Col. 22, line 54. Change ® ¢ = ® to --- ¢ * ---,
-y y
Col. 22, lines 56-57. Change ® &c ~ ™ to --- 6c % ---.
y
Col. 22, lines 56 - 57. Change ® ¢~ ® to --- ¢ * .-,
v y
Col. 22, lines 58 - 60. Change ® Ac * ® to --- 6¢c % ---,
g , y Yy
‘Col. 22, line 64. Change ® /Ay/ /I ® to —-- |ay| /1 ---.
Col. 22, lines 66 - 67. Add the equation number --- (65a) --- at the
end of the line at the margin. ‘ |
1
Coi. 22, lines 71 - 72. Change " io—g-;-—l-(-)d(logo sec s) ® to

1
—- md(loge sec §) ---.

Col. 23, line 26.. Change ™ (65) ® to --- (65a) ---.

Col. 23, lines 27-28. Change " dcy= " to --- de ¥ oo

Col. 23, lines 33 - 34. Change ® dcyz " to --- dcy* -
Col.. 23, line 36. Change "o TR o e g koo

' y y
Col. 23, line 37. Change ® ¢ = P to --- c ¥ ---.

y .y

.Col. 23, line 39. Change " cx= "to --- ¢ ¥ ---
Col. 24, line 4. Change ® d* (a- (wﬁ)) " to --- d"(a’(bc)) ---.
Col. 24, line 5. Change ™ ¥y - (o.g)) " to --- d* (b (ac)) ---.

Col. 24, line 5. Change ® y-{(ab)) ® to --- d*(c* (ab)) ---.
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Col. 24, lines 25-26. Change bold face PPl to regular font --- and ---.

1

‘Col. 25, lines 26 - 27. Change ® ¢~ ® to ---"c% ---.

: 1 -
Col. 25, lines 49 - 50. Change ® ¢ ® to --- ¢~ ---.

Col. 25, lines 49-50. Change " ¢ ® to --- c* ---.

Col. 25, lines 51 - 52. Change ™ ¢~ % to --- c¥ ---.

Col. 25, lines 53-54. Change " c1 " to --- ¢~ ---at both occurrences.
Col. 25, lines 55 - 56. Change *® SRR IR P
~ Col. 25, lines 56 - 57. Change " c1 . .to --=- c~ | -

Col. 25, lines 57 - 58. Change 8. c1 ® to --- ¢~ --- at both occurrences.
Col. -25, lines 58 - 59. Change " c1 " to --- ¢ ---.

Col. 25, line 64. Change " c1 B {0 == €7 -=--.

Col. 25, line 65. Change ® clom to --- ¢7 ---.

Col. 25, line 71. Change ® c1 ¥ to --- c; -—-

Col. 25, line 7’2. Change ® c1 " to --- ¢ ---.

Col. 26, line 5. Change " c1 ® to --- ¢” ---.

Col. 26, line 7. Change ® ¢l " to --- ¢~ ---.

Col. 26, line 7. Change ® ¢~ ® to --- c* =---.

Col. 26, lines 10 - 11. Change I"cl P to --- ¢c” ---.

Col. 26, lines 10 - 11. Change ™ c% ® to --- c* ---.

Col. 26, line 23. Change " c1 " to e-- ¢ ---.
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Col. 27, line 7. Change ® ¢ ® to --- ¢~ ---.

Col. 27, line 50. Change * A, " to --- Ax --- inthe denominator of the

formula.

Col. 27, lines 51 - 52. Change ® Ix* B oo --- lx* --- at both occurrences

1 . .
Col. 28, line 11. Change ® ¢ ® to --- ¢~ ---.

Col. 28, line 22. Change ® ¢~ ® to --- c¥ ---.

Col. 28, line 24. Between ¥ Set " and ® ( " insevrt R BT
Col. 28, line 25. Change ® y~ " to --- lY"k -

| Col. 28,‘ line 27. Change ™ y= ® to --- ly* ---.

Col. 28, lines 33 - 34. Change " ¢ " to --- c* ---.

Col. 28, lines 35 - 36. Change ® cx~ % to --- c K ==

Col. 28, lines 35 - 36. Change ® % ¥ to --- L¥ ---

Col. 28, lines 37 - 38. Change " x~ 'A,to - lx# -

Col. 28, lines 40 - 41. Change ® ¢ ® to --- C ---.

Col. 28, lines 41 - 42. Change " ctow to --- ¢” ---.

Col. 28, lines 47 - 48. Change ® c1 8 o0 --- ¢~ ---.

Col. 28, lines 48 - 49. Change i;calic ® scale* to regular font --- scale
Col. 28, lines 48 - 49. Change ® c=1 * to --- c =1 ---

Col. 28, lines 49 - 50. Change ® ¢ " to --- c, —

Col.28, lines 50 - 51. Change ® csc, * to --- €sc, ----

Col. 28, line 53. Change bold face ® 10 ® to bold face --- 16 --- at

~first and third occurrences.
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Col. 28, line 53. Change ® y~ ® to --- Ay¥ ---.

Col. 28, line 55. Change " sec_ " to --- sec,

Col. 28, line 55. Change ® x~ ® to --- x¥ ---,

Col. 28, line 56. Change ® x= ® to --- x* ---.

Col. 28, line 57. Change ® p ® to --- p ---.

Col. 28, line 59. Change ® p ® to --- p ---.

Col. 28, line 59. Change bold face ® 10 ® to bold face --- 16 --- at second

oCccurrence.

. .
Col. 28, lineb63. Change ® ¢~ ® to --- ¢~ ---.

Col. 28, line 66. Change ® a_= B oty --- a¥ —--.

Col. 28, line 68. Change ® a~ ® to --- a¥% ---.

Col. 28, line 73. - Change ® ‘cl B {0 —-= €T e,

Col. 29, line 1. Change ® ¢ ® to --- c  ~--.
y y

Col. 29, line 1. Change " c, oo --- ool

- 1
Col. 29, line 2. Change ® ¢ ® to --- ¢~ =---.

‘ 1
Col. 29, line 3. Change® ¢ ® to --- ¢~ ---.

Col. 29, line 3. Change ® °y ! to --- ¢ ---.

Col. 29, line 4. Change " =Z-c ® to --- =2 -ct ---,

Col. 29, lines 7 - 8. Change * ¢ ® fo --- C ---.

Col. 29, line 71. Change % c1 u to --- c7 ---.

Col. 29, line 72. Change ® ¢ ® to --- c* =---, 4

Col. 30, line 67. Change " ¢ ® to --- c™ La--.

Col. 30, line 70. Change ® ¢ % to --- c¥ ---.

Col. 31, line 2. Change ® ¢ % to --- c¥ ---.
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Col. 31, line65. Change " ¢ " to --- c¥ ---.

Col. 36, line 19. Change ™ ¢~ * to --- c¥* ---.

Col. 36, line 72. Change ® Cy= % to --- cy"f -

Col. 36, line 72. Change " ly= * to --- ly*‘ ——

Col. 36, line 73. Change * c:x= 3 to --- Cx* -——

Col. 36, line 73. Change % lx= ® 4o ---'.l X oemm,

x

Col. 37, lines 27 - 28. Change ® Ay™ ® to --- Ay¥ ---,

Col. 37, lines 28 - 29. Change ® Ax™ ® to --- Ax* ---.

Col. 38, line 1. Change ™ cy ® to --- ZY --- at second occurrence.

Col. 38, line 29. Change ® a~ % to --- a¥ ---.
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