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3 Claims, (Cl. 235—-61)

This invention relates to calculators of the sliderule
type for the easy and guick solution of complicated mathe-
matical equations, specifically to determine the electrical
parameters of a semi-conductor when some other param-
eters are known and also to determine the chemical po-
tential in chemical and solid state physical reactions.

A few graphical calculators for semiceonductors have

been devised in the past, as described in the following pub-
lications:

1. Shockley: Electrons and Holes in Semiconductors, Van
Mostrand, 1950.

2. Lehovec and Kedesdy: Jours. Appl. Phys. 22, pp. 65~
7,1951

3. Mooser: Zeitschr. Angew, Math. u. Phys. 4, pp. 433~
449, 1953

4. Spenke: Electronische Halbleiter, Springer, 1956.

In 1, 2 and 4 some drawing work is required when
using the nomograms. In 3, a new shest or drawing must
be prepared for each new substance under consideration.

My invention overcomes these difficulties by inscribing
the parameters permanently as lines or curves on slidable
or rotatable discs or plates, some of which are trans-
parent. When the discs have been rotated according to
the information available in a particular problem, the
answer comes out at an intersection of some of the lines.
A siide-wire or hair-line with a scale is used to read out
the answer.

The semiconductor calculator according to my inven-
tion can be prepared for detailed calculations on a par-
ticular substance, or equally well in an entirely universal
form for semiconductors of widely varying energy gaps.
These determinations, in addition, can be made over a
wide range of temperaiures.

In the accompanying drawings FIG. 1 shows the top
and FIG. 1A side views of a calculator having a base disc
24 and pivotally mounted thereon a transparent donor
impurity disc 25, a transparent hairline cursor 19 and de-
mountable pin 31, all rotatable about their centers 3 and
4; FIG. 2 is a schematic of the energy levels and the
forbidden gap energy E, of a semiconductor; FiG. 3
shows a transparent hairline cursor 19 with a scale for
normalized gap energies 28 at one end, for the gap-tera-
perature muitiplier at the other end, used with base disc
24 rotatably secured through pin hole 4 to center 3; FIG.
4 shows a simpler type hairline cursor 29 having a Fermi-
energy scale in kT-units used with disc 22; FIG. S shows
an alternative type of hairline cursor 21 used with base
disc 22, provided with a slide-rule cursor 18 for tem-
perature calculations, the side view of which is shown in
FIG. 3A; FIG. 6 shows a simple type of base disc 22
made of non-warping opaque sheet provided with a
logarithmic scale 11 along the periphery for the normal-
jzed carrier density and curve 2 relating through Eq. (1)
said carrier density to the Fermi-energy measured radially
from conduction band 1 towrads center 3 using cursor 2¢;
FIG. 7 shows a base disc 23 having the conduction and
valence band edges 1 and 9 respectively and using corsor
19 to measure negative normalized energies from band
edge 1; FIG. 8 shows a transparent donor disc 25 pre-
senting energy levels 8 and state of ionization lines 15;
FIG. 9 shows an acceptor impurity disc 26 with normal-
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ized energy levels 18 measured from conduction band 1;
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FIG. 10 shows a base disc 24 carrying in its upper half a
nomogram 14 for computing carrier density for varying
gap-widths and temperatures using scale 22 on cursor 19.
FIG. 11 is a donor disc 27 used on a base disc with an
exponential Fermi-energy scale.

A semiconductor is a substance which can bshave with
some metallic characteristics while under other conditions
it exhibits some of the preperties of an insulator. - The
conditions arise from changes in temperature, electro-
magnetic radiation or the incidence of high energy par-
ticles, to name some exiernal infiuences. Internally the
purity of the substance and the deliberately introduced
impurities determine its behaviour.

The semiconductor characteristics are described by an
energy level diagram, shown in FIG. 2. The distance E,
in energy units between the conduction band E; and the
filled or valence band E, is cailed the forbidden gap. It
gives the substance in a pure state and at a low tempera-
ture the characteristics of an insulator. All electrons
which might give rise to conduction, luminescence, recti-
fication or generation of an E.M.F. are in the valence
band and only very few are in the conduction band. If
the forbidden gap is small some electrons may be able to
jump it due to thermal or other infiuences. The current
which can flow in the semiconducior is determined (1),
by the number of thess electrons and (2), the holes which
they left in the valence band, and the respective mobilities
of these carriers. This is called intrinsic semiconduction
which is easily handled by the present calculator.

The number of conduction elecirons is greafly in-
creased by the presence in the substance of a small num-
ber of impurities. These are genersily classified as donors
of density ng located at the energy Eg if they are suppliers
of electrons and as acceptors of density s, located at the
energy E, if they are consumers of electrons. This is
called extrinsic or impurity semiconductivity.

The number of elecirons # in the conduction band is
n=f{E).g(E) where g(E) is a function expressing how
many places or levels there are, and F{E) is another
function expressing their probability of being occupied.

if the gap Bg is large (several times XAT, where
k=Boltzman’s consiant and T==absolute temperature) it
is sufficient to use Boltzraan siatistics. Referring to the
treatment by Blakemore in El Commusication vol. 29,
pp. 131-153, 1952, and rewriting into a form suitable
for my calculator:

_2!/27rmek30()>3/2/_’.£ 3/2% E.—Ey
e 305/ “P %7
H.,—Ey
=}, X P
Ne exp ~7m (1)>

where:

Ep=Fermi-level

Ny=numerical factor, essentially a material constant in-
dicating number of electron levels

1., my=—effective mass of electrons and holes

h="Planck’s constant,

N, is used instead of N, and my, for m, when writing an
equation similar to (1) for positive carriers or holes p.

When the gap is small (of the order of £T) it becomes
necessary to use Fermi statistics. The electron density
is then

n=Nj(F) 2)

where F is the Fermi-function, integrals of which have
been tabulated (ref. Blakemore)}.

Curve 2 is a graph of Eq. 1 inside circle 2. The nor-
malized carrier density n/N, has a logarithmic scale 11
along the circumference.

E,—Ep
kT
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is measured along the radius from its zero at the edge
of the conduction band 1. It has negative values inside
the circle 1. Outside the circle it is positive, the energy
levels are degenerate and Fermi:statistics Eq. 2 are in
- effect. A line drawn radially from the origin 3 to a given
value n/N, on the periphery intersects curve 2 and the
radial distance of this intersection to circle 1 is the Fermi-
energy, referred to the edge of the conduction band 1.
In FIG. 7 this energy is measured by placing the hair-
line cursor 19 with its center 4 pivotally over the origin
3 of the base disc 23, and reading the result from 0 as
negative fractions of the normalized energy. (See also
Eq. 7.) In FIG. 6 the cursor 20 functions as the mov-
able radical hairline for-the base disc 22.- The cursor
28 is provided with pivot 4 for a pivotal connection at
center 3 of the base disc 22, with a hairline 5 and a
scale 3@ for reading out the Fermi-energy.

If the majority carriers are holes, circle 1 may be
used as the valence band and the peripheral scale for
normalized hole density p/Ny.

In FIG. 6 it can be imagined that the minority car-
rier band is shrunk into point 3, the origin. For calcu-
lations where both types of carriers are present in ap-
preciable numbers it is convenient to use the base disc
23. Here the circle 9 represents the minority carrier
band edge and the curve 16 determines their density
ratio.

In order to give expression to the influence of tempera-
ture the cursor 21 in FIG. 5, has in addition to the radial
hairline 5 a family of parallel lines 6 showing tempera-
tures from minus 100° C. to plus 100° C. The energy
scale along the haitline § is for the reference tempera-
ture T300=300° K. (absolute temperature). The energy
at other temperatures is found by projection normally to
the radial line S. A sliding cursor 18 of ordinary slide-
rule type is provided to facilitate this read-out.

Up to this point the description has mostly dealt with
intrinsic semiconductors which can be analyzed merely
by base disc 22 and cursor 29 or disc 23 with cursor 19.

In problems involving impurity centers in thé semi-
conductor the calculator will be provided with trans-
parent donor and acceptor discs 25 and 26 shown in
FIGURES 8 and 9 respectively, as required.

It can be shown that the number of ionized donors
ng* (which have “donated” their electrons to the conduc-
tion band) is:

1

8,076,596

10

4

added pivotally over these discs. ~The calculation will
then be done as described in_paragraph 3, page 10. The
embodiment shown in FIG. 7 incorporates a featur.e
which makes this calculator universally usable for vari-

ous energy gaps and a wide range of temperatures.
From Equation 1 we obtain, for E.=0,
. n/Ne=exp—E/kT (3)
. and .
' —E/kT=Inn/N, (6)
We divide now both sides by —FE/kT and find:
Ey/Ey=—kT/Eglnn/N,; (M
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=g
1+ Ze.'cpE°k_TEFexp —E"'];—TE"
where: )
ng==total nmimber of donor impurities per unit volume
(cm.3)
Using Eq. 1 and dividing by N, one obtains:
nat  na 1 4
N No |4 g 4

T

A similar expression can be derived for jonized acceptor
impurities n,~ and n, using N,.

In the case of an excess semiconductor having a sub-
stantial concentration of donors ng one has, in the steady
state

rn=ngt

{neglecting the intrinsic density ;)

On the calculator this case is handled by placing piv-
otally upon the base disc 23 the donor disc 25. The
latter has a radial line 7 pointing to the normalized donor
‘conceniration rng/N, on the peripheral scale 11, and
branching out more or less spirally curves 8 which are
drawn in accordance with Eq. 3 and are designated in
normalized energy units to indicate the distance of the
donors from the coaduction band. The cursor 19 is
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“thus proceed as follows.

Accordinig to this equation, I can measure the radial
energy distance from the conduction band edge 1 in frac-
tions of the forbidden gap width E;/E,, and have plotted
the scale 12 as the 1ogar1thm to the base 10 of n/N¢. The
curve 2 has been drawn for the case where the forbidden
gap E =1 electron volt, and for a room temperature of
300° K. The curve 2 for electrons meets the curve 10
for holes at the point 13 which is at Ey/Eg=1, if the
effective masses of the carriers are equal. At this point
np=n2, for intrinsic semiconduction. The scale 11 in
FIG. 7 measures n/N, for the case of Ez= 1 ¢v.

Equation 7 shows that for any other value of gap the
scale 12 (to the logye(n/N.)) must be multiplied by the
appropriate valué of E;. To find n/N, it is necessary to
look up a tabie of logarithms.

Equation 7 shows similarly that for any temperature
different from 300° K. the logarithm must be divided by
the ratic 7/Ta0. This suggests the use in a universal
calculator of the multiplier

300 E,
T

FIGURE 10 shows an embodiment including a nomo-
gram 14 which enables the multiplication and the extrac-
tion of n/N. without recourse to tables of logarithms.
The lower semicircle of FIG. 10 includes the n and p
curves 2 and %0, the conduction and valence band edges
1 and 9 respectlvely and the logarithmic scale 12, which
is retained for precise calculations.

. The upper semicircle includes a family of loganthmlc
spirals 14, marked for populations #/N, or p/N, from
10-20 to 1.1,

With this base.disc we use the special hairline scale 19
shown in FIG. 3.. The right hand end carries a linear
energy scale 28 in fractions of E, while the left end has
a scale 29 in terms of the multiplier derived above.

To use .the calculator in an intrinsic.case we would
For a known gap and Fermi
level we would rotate the hairline 5 on cursor 19 untii the
distance between curve 2 and circle 1 corresponds to
that fraction, We will then follow the hairline 5 to upper
semicircle of base disc 24 and find at the value of the
multiplier on the logarithmic scale 28, one of the spirals
marked with the population ratio, otherwise same must be
interpolated. between two spirals.

The drawings and the values shown in FIGURES 3, 4,
5,6, 7, and 10 are approximately correct but should not
be used for calculations,

FIGURE 1 shows an assembly into an operatmg calen-
lator of parts similar to those described in FIGURES 3, 8,
and 10, "On the base disc 24 are centrally, rotatably
mounted the donor disc 25, FIG. 8, and the hairline rotor
19; FIG. 3. ,

To find the Fermi level in the case of an impurity semi-
conductor where the donor number and energy is known,
we would proceed as follows.

" Rotate the radial line 7 on donor disc 25 to the pe-
ripheral scale 2 on FIG. 1 opposite the 10g of the num-
ber nq/N, Note the spiral line 8§ marked with the donor
energy depth fraction and observe the intersection of this
line with the electron curve 2. Rotate the-hairline 5 on
cursor 19-to the intersection and read on the scale 28 the
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distance of the Fermi level from the conduction band edge
circle 1. On scale 12 the hairline extension points fo the
logarithm of n/N, which can be evaluated for the given
gap width by the attached gap teroperature nomogram 14.

If the intersection of the donor line is not in its curved
part but along the line 7, all donors are ionized. The

donor discs 25 are provided with further radial lines 15

which, counting from the line 7 indicate 50%, 10% and
1% ionization of the donors respectively. :

The case illastrated in FIG. 1 is one of impurity
semiconduction with a domnor level at .2 of the forbid-
den gap width and a tota! donor population ratio
log(ng/N,)=-1.5. When the donor disc is rotated into
this position the intersection is found at —.16 of the gap.
Thus if the gap is .77 ev., the Fermi level is at .123 ev.
below the conduction band edge. The logarithm of elec-
tron population ratio is —2.5, and following the hairline
into the nomogram, we find at room temperature for a
gap width of .7 ev. an eleciron population ratio
n/N,=.01. For a temperature of 1220° abs. and above
nominal gap we have a total muliiplier .19 which gives a
value n/Ny=.3.

The intersection occurs at the third radial line on the
donor disc indicating a donor ionization of 10%.

If only holes and acceptors are present, greater accuracy
of readings is obtained if in FIG. 1 the circle 1 is used
as the valence band and the curve 2 for the hole popula-
tion,

When electrons, donors and acceptors are present, an
acceptor disc 26 of the type shown in FIG. 9 must be
added concentricaily to the calculator FIG. 1, between
the donor disc and the cursor 19. The acceptor reference
line 17 is set to the appropriate value n,/N, on the pe-
ripheral scale. In general the depth of the acceptors does
not much affect results near the conduction band. How-
ever some very deep acceptors (near cond. band) are
shown in FIG. 9 as the curves 16. The figures labelling
these lines are counted from the conduction band, for
operating convenience. It happens frequently that the
radial line of the donors is one or two decades above the
radial line of the acceptors.

In that case the radial line 17 of the accepors inter-
sects with the electron curve 2 before meeting the given
donor level 8, Onre must then continue along 17 towards
the center until the correct donor level is intersscted.
This poini will then determine the Fermi level.

While in the figures discussed thus far embodiments
have been shown with essentially circular scales for the
relative populations n/N,, I have made corresponding
data plates with other scales and shapes. It is possible
to make 2 calculator of semicircular form or even reduce
the shape to a sector little different from a quadrant of
a circle. Other curves of conic section type have also
been found convenient, particularly the hyperbolic,
because of its relationship with the exponential functions,
now used for the electron and impurity distributions.

Ancther embodiment with considerable advantages uses
a logarithmic scale for the radial distance or energy
fraction E¢/E;. This is particularly useful when accurate
readings are needed for substances with very small
energy gaps (a few XT), such as indium antimonide.
FIGURE 11 shows a donor disc 27 prepared for such a
calculator.

It is further possible to make from this invention a
more pretentious aufomatic analeg computer in which
the scales can be rotated by remote control and the
intersections of the luminescent curves can be observed
on a c.r. tube or, if the curves are made of conductive
or photoconductive material, by coincidence circuits.

While I have shown and described preferred embodi-
ments of my invention, it is to be understood that various
modifications and changes may be made without depart-
ing from the spirit and scope of my invention and I
desire to be limited only by the scope of the appended
claims.
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I claim:

1. A semiconductor circular sliderule comprising: a
base disc inscribed with 2 large and a small circle repre-
senting the conduction and valence band edges, the dis-
tance E./kT apart, where E, is the energy gap of semi-
conductor, % Boltzmans constant and T the absoluie
temperature, whereby radial distances in the space
between said circles are measured in terms of AE/LT
where AE is an eunergy difference, a peripheral logarith-
mic scale for the density n of current carriers expressed
as the ratio n/N,, where N, is a material constant for
electrons at the temperature 7==300° K., and curves

: E,—Ex
n/Nc=exp ckT—r
and
Er—F
p/Ny=-exp _rlﬁ;_v

where E; is the energy of conduction band edge, By
energy of valence band edge and Eg is the Fermi energy,
related to said scale and said radial emergy ratio; piveted
concentrically over said base disc a transparent disc
inscribed with spaced radial lines representing percentage
ionization of donors, and with a family of curves emanat-
ing from the first of said radial lines according to the
equation:

met_ma 1
N, N,  Fi—Ex
1+2e4p——~———~kT
related to said scale and said radial energy ratio, repre-
senting donor impurities having energy levels By and
densities ny of which the fraction ngt is ionized; a trans-
parent radial cursor inscribed with a scale for the energy
E.—FEg
kT

pivotally rotatable over said discs, whereby problem solu-
tions such as the Fermi-level can be found at the inter-
section of a particular donor energy curve selected from
said family of curves, when the first radial line is rotated
to the concentration ng/N, on said peripheral scale,
with one of said curves on the base disc; and a sliding
cursor on said radial cursor; where p=number of holes,
Ny=material constant.

2. A semiconductor circular sliderule as defined in
claim 1, having a second transparent disc inscribed with
a family of curves according to the eguation:

Ne” R 1
Ny Ny  Ey—H,

14-2exp T
where n,~, n, and B, characterize acceptor impurities in
the semiconductor and refer to said coordinates and
where Ny is a material constant for holes at the tem-
perature T=300° ¥.

3. A semiconductor circular sliderule comprising: a
first disc inscribed with a large and a small semicircle
representing the conduction and valence bands respec-
tively unity energy distance apart, whereby energy dis-
tances in the space between said semicircles are measured
radially to scale as fractions E/E, where E is the in-
dependent energy variable and E, is the gap energy
represeited as unity, a- peripheral logarithmic scale for
the density of current carriers » expressed as the ratio
n/N,, where N, is a material constant at the temperature
300° K., and curves

Ey/By=+kT/E: In Z—\?
where Egp is the Fermi energy, % Boltzmans constant, T
the absolufe temperature, plotted relative to said radial
and logarithmic scales, and in the second half of said
first disc a nomogram comprising a family of spiral curves
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inscribed with population numbers (1/N,)P:extending
the range of said peripheral scale and representing other
gap energy and temperature values accordmg to the
exponent

__E..300
- T
a second, transparent, disc centered and rotatable over

said first disc, inscribed with a family of curves according
io the equation:

b

nat__na, 1
E,

N NU
14-2e XP(E )T

related to said normalized scales, representing donor
impurities ng in said semiconductor having energy levels
Eqy as the ratios Eg/E; and densities ng/N, of which

10
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8
ngt/N, are ionized; a transparent radial hairline cuisor
with a scale for the energy E/E; on one end and a scale
for the exponent b at the other end, concentrically rotat-
able over said discs, whereby problem solutions such as
the Fermi-level Ep can be read out as found at the inter-
section of a particular impurity epergy line E4/E; on
the second disc with one of said curves on the first disc.
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