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To all whom it may concermn:

Be it known that I, HerserT HENRY ED-
MONDS, master mariner and instructor in navi-
gation, a subject of the Xing of Great Britain,
residing at ‘“Idalia,” Longueville, near Syd-
ney, in the State of New South Wales and

Commonwealth of Australia, have invented an

Improved Instrument for Graphically Solv-
ing Spherical Triangles on a Plane Surface, of
which the following is a specification.

This invention relates to an improved in-
strument, hereby named the *‘spheroplane,”
whereby sphencal triangles may be graphic-
ally solved on a plane surface. Hence also by
it may be solved all ordinary spherical prob-
lems in navigation and nautical astronomy,
for which it has been specially devised, while
it will be found useful whenever sphex ical
problems have to be solved. :

This improved instrument for graphically
solving spherical problems, or spheroplane
consists of a peculiarly-scaled plane surface

-and certain movable parts, hereinafter par-

ticularly described and explained.

My invention is shown in the accompany-
ing draw1n<rs, in which—

qute 1 is a perspective view showing the
sphéroplane tilted upwardly in order to show
more clearly the scales and workings thereon.
Fig. 2 is a perspective view of the plane
marker X. Fig. 3 is a like view of the side
marker Y, and Fig. 4 is a like view of the
subdivider Z.

In the drawings, A is the plane surface; B,
the support; C, the base; D, the left vertical;
E, the upper margin; F, the right vertical-,
and G the are.

- H represents horizontals, and J verticals.

K is the slide, (in theslot I,) having there-
on the scales.

. M 1s the center pin at the center of the arc,
and N shows bottoms of the slot with sine
nuinbering thereon.

P is a scale of equal parts, and Q is a scale
of squares of numbers.

R is the movable radius-bar, having red
center S and blue ecenter T, divisional mark-
The plane
marker X, the side marker Y, and the sub-
divider Z are the useful accessories, herein-
after described.

I will first describe the instrument and
thereafter set forth the principles on which

it is constructed and then give a few exam—

ples of its utility. . e
The spheroplane c0n31sts of a plane surfa A

henceforth called the *

55

‘plane,” and on th1< 15, 7

movable radius bar or bars and a sliding scale. -

The plane consists of a perfectly flat” sur-
face of metal, celluloid, or other material of
rectangular form mounted on a support of
The

suﬁ‘ic1ent thickness to insure rigidity.
sides of the support should be perfectly par-
allel to the sides of the plane, or if the planc
is of any thickness should be flush with tb

sides of the -plane. Upon the plane is-..

scribed a perfect square.
on each side thereof about one-twelfth of 4
side of the square, and at the bottom, hence-
forth called the *‘base,” of about one-eighth
of a side of the square. The square is ex-
tended upward until there is a margin left at
top of about one-twelfth of a side of the
square. This upward extension should be at

least equal to one-half of a side of the square,.
as it is of importance for solving two of the;
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A margin is left’ '
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problems—the altitude azimuth and the hour- . -

angle problems. When it is required to find
these angles up to not less than one hundred

and twenty degrees, the ratio of the sides to

base must be as above 1.5, and if said angles
are required to be found up to not less than
one hundred and fifty degrees then the ratio
1.866 will be required. The base considered
as unity may be of any size. Twenty inches
has been found to give as good results as
necessary. Theleft-hand intersection of side

and base is made the center of the plane, and.

from this center, with the base as radius, a
quadrant of a circle is described to be ter-

minated by the base and *‘left vertical,” as

the left side will henceforth be called, this
quadrant being called the ‘‘arc.” Aboutone-

quarter of an inch below the base and paral-

lel to it is a groove or slot, henceforth called
the *‘slot,” thisslot to be wider at the bottom
than at the top and to run right across the
plane and support and its width at the top to
be about half an inch. Through ,this slot
travels aslide on theslide-rule principle. This
slide just fits the slot, so that its only possi-
ble motion is longitudinal, while its length is
just the width of the support, and for con-
venience it has a small handle at its right-
hand end. The slide is divided longitudinally
by a straight line todivide the two scales which
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Je engraved on if, the upper one being
8 cosine scale and thp lower one a tangent
scale. The slide being placed in position
with its ends flush with the sides of the sup-
§ port, the left vertical is extended downward
to thelongitudinally-dividing line of said slide,
and said vertical - is marked with an-arrow-
head where it meets the slide, which arrow-
head is used as the index of the cosine slide
or scale. The base from the arc center to
the right is divided to sines, each division
being one degree, and the left vertical from
. the'arc center up to the arc is divided the
' sa e way, these scales being either sinés or
co L‘nes according .to which way they are
When numbered from the arc
cénter toward the arc from ““0°” to **90°,”

L they aresines, when from the center toward the

arc from ‘“90°” to *‘0°” they become cosines.
Through each of the divisions on the base,
“commen_cmg at the longitudinally-dividing
me of the slide and extending right to the

D of the plane, are straight lines parallel to’

L Cleft Vertlcal herematter called “‘sine ver-
25 ticals” or ‘‘cosine verticals,” according to
- which way they are numbered. .-For cosine
verticals they may be conveniently numbered
on the cosine scale on the slide from *90°” at
“the arc center or index to ‘“0°” at the arc, and
forsines from *‘ 0°” at thearc center to **90°?
-at_the arc below the slide on the bottom of
the slot, so that when sines are required
- the slide may be withdrawn to reveal them.
. ‘Parallel to the base from the divisions onthe
eft vertical to the right vertmal ‘are horizon-
“tal !mes, hereinafter called *‘sine horizontals”
or
way they are numbered. Just outside the

left vertical they are numbered for cosine

horizontals from “90O ” gt the arc center to
*“0°»” at arc. The arcis divided into degrees
of arc or smaller divisions from ““0°” at t base
to ““90°” at left vertical and also to time out-
side the arc divisions from naught hour at
base to six hours at left vertical. It will be
seen that each vertical line and each horizon-
tal line intersects a division on the arc, and

' thus the horizontal lines are numbered for
- sines and the vertical lines for cosines by the

numbers on the arc, which is convenient when
the cosines are required for time. The right

vertical is a tangent to the arc and is divided

throughout its length to tangents, each divi-
sion being one degree, which may be subdi-
vided, the divisions to be marked and num-
bered outside the plane from the base up from
“0” toward “90.” The top horizontal is to
be d1v1ded to cotangents from *‘90” at left
vertical to ‘457 at right vertical. These tan-
gents and cotangents are divided to the same
scales as the sines and cosines where radius
equals unity equalstangent forty-five degrees.
Preferably the horizontals and verticals, and
also scale divisions, have every fifth division
65 marked a different color, a very good distinc-

"cosine horizontals,” accordmg to which .
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tion being to have ordinary lines and divi-
sions black and fifth ones red, while having

. the tangent and cotangent divisions and the

lines they are divided on of blue. The re-
maining scales now to be described are con-
veniently marked in green and are for solv-
ing the exmeridian problem only. The lower
longitudinal half of the slide and the plane
below it for the same width are divided and
numbered into twin scales of tangents from
left to right and from ‘°0” toward **90°,” the
*0°” coinciding with the ‘90°” on the co-
sine slide, but this only for uniformity. If

‘the plane be a small one—say of fifteen inches

radius—this scale is better commenced close

over to the left to allow of ‘more degrees of

tangents being marked, which should not be
less than seventy-five degrees in these scales,

-tangent forty-five degrees being one and tan--

genb seventy-five deorees being 3.732, taking
a quarter of the w1dch of the plane as unity.
Tangents up to seventy-five degrees can be
included on these scales. Below the slide and
tangent scale and parallel to these is a scale
of equal parts, where 30.56 must equal one
division and unity may conveniently be taken
as one two-hundredths (3¥s) of an inch, so
that each division equals .1528 inch and one
hundred divisions, which is more than is re-
qulred would equal 15.28 inches. The above
scale is suitable for a plane of fifteen-inches
radius; but if of twenty-inches radius then one
one—hundredth of an inch is a better unit, and
then one division equals .3056 and sixty-five
of these would becontained in twenty inches.
The zero of this seale of equal parts must be
at the extension of left vertical. OQutside the
left vertical and its numbering and parallel
to it, commencing from the left continuation
of the base, is a scale of squares of numbers
from ‘‘0”at base to **60,” more or less. As
the left vertical will -allow the same unit to
be used in this as was used in the lower base-
scale of equal parts just deseribed, horizontal

green lines may be drawn bhrou\rh these di-

70’
75
8o
85.'
90
95

100

‘105

110

visions to the right vertical, but only above -

the sine and cosine horizontals. At the in-
tersection of the left vertical and base—:. e.,
the arc-center—is securely fixed a pivot about
one-sixteenth inch thick slightly tapering up-
ward. This pivot should be made of any
hard metal which will not corrode at sea, and
its height is conveniently about three-quar-

ters (2) of an inch. With this plane surface

is combined a movable radius-bar made of
stout transparent celluloid about one-twen-
tieth of an inch thick, from oue and a half to
two inches wide, and about two inches longer
than the diagonal of the plane. The sides of
this radius-bar are parallel throughout its
1ength and a medial straight line, called the
*“radius,” runs from end to end parallel to the
sides. On this radius are pierced two holes,
one about one inch from one end to be called
the ‘‘blue center,” the other distant from the
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first exactly the radius of the arc called the
“red center.” The size of these centers is
such that they just fit over the pivot without
play when the radius-bar is flat on the plane.
The radius is divided into a scale of sines from
the red center toward the blue center and
from the red center toward the other end of
radins as far as the radius will allow. These
divisions are the-same as those on the base
and left vertical of the plane, so that when
the red center of radius is shipped over the
pivot and the radins made to coincide with
either of these lines the divisions on the ra-
dius will be superimposed over the divisions
on the plane. The divisions are numbered
from the red center toward the blue from
0% to ““90°” to sines above the radius, the
word ** Sines” preferably being printed above
the numbers, and are numbered from the red
center toward the blue from “90°” to **0°”
to cosines below the radius, the word *‘Co-
sine” preferably being printed below. The
lower divisions are also numbered to time

from six hours at red center to nanght hours

at blue. When the radius-bar is reversed and
the blue center is used, these last-named num-
bers come on top and become versines in arc
or time when starting from blue center, since
they only go up to **90°” or ‘“6"” at red
center. These numbers are continued on to
the other end of the radius to ‘“150°,” or ten
hours, more orless, as the lengthallows. The
divisions on the radius are on the underneath
side, so that they are touching the plane, while
the numbering ison the upper side. On the
upper side are fixed two small handles, one
at each end, clear of the divisions to facilitate
working withif, the extreme end:-of the ra-
dius beyond the blue center to be called the
index when the red center is used and the
part beyond the red center to be called the
index when the blue center is used, and as
these centers will be on the are, respectively,
when the other center is used, one degree of
arc subdivided to quarter-degrees may be con-
veniently marked on-each side of the radius
just outside these centers, so as to enable the
radius to be set-exactly at any quarter-de-
gree. . ‘ ,
A radius-marker is made to slide along the
radius-bar. A strip of thin vulcanite answers
the purpose well, and it conveniently should
be about half an inch wide. Thismarker be-
ing-made, say, an inch longer than the width
of the radius-bar, the ends may be bent over
by means of heat to grip the radius-bar with
sufficient tension to prevent slipping, and the
inside should be white to allow the radius di-
visions to be seen. The position of the marker
is underneath the radius-bar, and either edge
can be used to mark any desired division on
the radius.

Certain convenient accessories are provided
with - the plane surface and radius- bar—
namely, a plane marker, a side marker, and

a

a subdivider—of the construction and useful-
ness as follows: A plane marker is made of a
rectangular sheet of thin transparent cellu-
loid, such as is used as a support for photo-
negative-films, and such a support with the
film stripped off answers very well, five inches
by four inches being a suitable size. This is
bisected vertically and horizontally by two
fine straight lines scratched thereon with prin-
ters’ ink, then rubbed in to blacken them, and
it is used to mark intersections of vertical and
horizontals, it being used with the lines next
to plane to avoid parallax.
the T-square principle is made of the same
material, with a similar single line bisecting
its width, (about three inches by one inch is
a suitable size,) the celluloid being cemented

to a strip of wood about three inches by half

an inch, say, by means of acetone, forming
the T-head. This head takes on the side of
the plane, and any outside divisions may be
carried into the plane by means of the medial
line. A subdivider is convenient, though not
generally needed. This may be made of the
same material and is marked by taking a one
and a quarter-inch chord of a circle of three-
inches radius, dividing it to ten equal parts,
and joining the divisions and center. By
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making the outside lines to coincide with any .

division not greater than one and a quarter
inches the division may be subdivided to
tenths. These divisions of the subdividers
are numbered from ‘0% to ‘10 at the wide
end.

The fundamental principle from which the
spheroplaneisevolved isderived from thetrig-
onometrical ratios. Taking one of them as an
perpendicular

hypotenuse °
where A is the acute angle at the base of a
plane right-angled triangle. By means of this
if the quotient of two numbers, which in the
case of the sine ratio must be less than unity,
be known and the value of one of these num-
bers also known, the value of the unknown
may be found by the rules for solving plane
right-angled triangles if we make the angle
A such that its sine is equal to the known
quotient. As.an example, let a:% first. As
above, where ¢ is less than unity let ¢ equal
sine ®. Then in a right-angled plane triangle
make A equal © and make the hypotenuse
equal to . Then solving by calculation or
construction we shall find the perpendicular
is equal to @, or if @ is greater than unity
then let @ equal cosecant ®. Then in a plane
right-angled triangle make A equal ©, and

hypotenuse
perpendicular
make the perpendicular equal 4. Then solv-
ing, we shall find the hypotenuse equais z. In
like manner we might have substituted for
the quotient any other of the ordinary trigo-

example, we have sine A equals

since the ratio for cosecant is
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nometrical functions. Innavigation an every-
day illustration of this principle and the one
that suggested its general application is that
of finding the difference of longitude corre-
sponding to a given departure, or vice versa.
The formula and proof of this are given in
every elementary treatise on navigation; but
a slight modification of the usual proof will
better answer the present purpose, as follows:
The difference of longitude is an arc of the
equator intercepted between two meridians.
The equator being a great circle, its radius is
The departure or meridian distance
is the length of a similar arc of a lesser circle
whose radius is equal to the cosine of lati-
tude. Then as circles and equal ares of cir-
cles are proportionate to their radii we have
departure
difference longitude

......

I equals

base
hypotenuse’
at the base of a right-angled triangle to equal
the latitude and the hypotenuse to equal the
difference of longitude the base will be found
by solving to equal the departure. .In this
way every day at sea the difference of longi-
tude corresponding to a departure or the con-
verse is found either by calculation or by in-
spection in the transverse tables. Obviously
we may also find the angle whose trigono-
metric function is equal to the quotient of
two known numbers, and having found the
angle the function may be taken from tables
or scales which would give that quotient, if
required. The principle is equally applicable
where the numbers to be divided represent
any of the trigonometric functions of an angle
or any power of those functions, or they may
represent the meridional parts of an angle or
of course plane numbers, or in the case where
both these quantities are known the quotient
may be any of the ordinary trigonometric
functions of an angle compatible with its
magnitude other than the versine, and in
one of these forms a plane right-angled tri-
angle can in various ways be made to solve
directly any case in right-angled or quad-

equals So if we make the angle

rantal spherical triangles or indirectly any .

case of obligne angled spherical triangles.
As an example of the former, suppose tan-

gent C to equal w Since the ratio
osine X
for tangent is B@%@E@Em‘zplanenoh&

angled triangle make the angle at the base to
equal C. Then it either for calculation we

“suppose or by construction we make the per-

pendicular to equal the numerical value of
tangent B by calculation or construction, the
base will be found to give the value of cosine
w, or if the perpendicular is divided to a scale
of tangents and the base to a scale of cosines
and we have an adjustable hypotenuse capa-

811,625

ble of being set at any given angle the value 63

of # may be found crraphlcally Again, we
may transform our formula to the form co-
tangent B

sine o=
tangent C’

the ratio for cosine being

base

hypotenuse
gent B and the hypotenuse to equal tangent
C by calculation or construction the angle at
the base will be z, and if the base of the
right-angled plane triangle be divided to a
scale of tangents and the adjustable hypote-
nuse be similarly divided the angle  may be
read off by means of a protracter. In the
case of an oblique-angled spherical triangle we
may have versine @ = cosine («-+7) — cosine ¢

cosine ¢ cosined’
Here, by adding, let ¢ 4  equal M, then cosine
M — cosine C may be evaluated by a slide-rule
with a twin scale of cosines which call cosines

, 50 making the base to equal tan-

¥ for the denominsator let cosine @ cosines b
. . cosine ©

equal © cosine. Thereforecosineg="—r——,
cosine &

and in this form cosine ® may be determined
on the principles already discussed. The for-

. cosine ¥
mula then stands versine z equals =0

’ cosine

cosine ¥
versine
solved in the same way, the ratio for cosine
being _ _base
= hypotenuse’
the base to equal ® and the base to equal co-
sine %, then the length of the hypotenuse is
equal toversinez. So if the base be divided
to a scale of cosines and the hypotenuse to a
scale of versines and we have means of set-
ting the hypotenuse to an angle ® with the
base, the value of 2 may be read oft from the
hypotenuse. The spheroplane is arranged to
perform these operations graphically. They
include all the ordinary spherical problems in
navigation or nautical astronomy—namely,
azimuth when rising, azimuth at greatest
elongation, altitude azimuth, time azimuth,
exmeridian-hour angle at rising or at any
other time when the altitude is observed. In
theory it solves these accurately. In prac-
tice the degree of accuracy is limited only

or cosine © equals , which can be

1f we make the angle at

by the size of the instrument and the work-

manship. A spheroplane of fifteen inches

radius divided to degrees will solve the vari-

ous azimuths to the nearest quarter-degree or
less, the exmeridian problem to the nearest
half-minute of arc if the observations have
been taken under ordinary conditions, and the
hour-angle problem to the nearest minute of
time easﬂy

A few examples will now be given to illus-
trate the use of the spher omee, dealing with
at least one example of the different types of
problems. These here given and other prob-
lems can be worked in various different ways,
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which the intelligent navigator who graspsits
principles can se Tect for himself.

On inspecting the spheroplane it can be seen
that it is divided vertically and horizontally
by straight lines. These become sine or co-
sine verticals and sine or cosine horizontals,

‘according to where their readings are taken

from. It can also be seen that each vertical
and horizontal cuts the arc at an even division,
so that the numbers on the arc which number
the degrees also number the verticals or hori-
zontals which pass through them. For cosine
verticals the readings are taken from the num-
bers on the upper scale of the slide when in
normal position. For sine verticals the slide
is withdrawn, and the readings are taken from
the numbers now exposed on the bottom of
theslot. Cosineverticals, if required in time,
may be read by the time division on the are
through which they pass. The horizontals
become cosine horizontals when they are read
from the scale on the left vertical and sine
horizontals when read from the divisions on
the arc through which they pass.

*“To revolve radius” means to revolve it on
one of its centers and does not mean to change
centers. ° ‘To reverse radius” means to change
centers. ‘‘To set the radius” means to setit
at any given angle on the are, and when set
this anorle is called the * ‘setting.” ‘‘Tomark
radius” means to slide the marker along the
radins-bar untilitsedge marksa given division
Either edge of the marker
may be used; but it is better to use the inner
edge when horizontals or verticals are to be
taken from the base or left vertical and the
outer edge when they are to be taken from
the top or right vertical. When the red cen-
ter of the radius is used, if it be directed to
mark the sine of an angle the upper numbers
are used; but if the cosine the lower numbers
on the radius-barareused. When the radius
is marked at a certain division, it 1s referred
to as the ‘‘marking.”

In these examples the form and style of
formula and workings usually observed in
mathematical investigation are used and re-
tained, and in addition the following phrases
when used herein have the particular mean-
ingsses forth,asfollows: *‘To withdraw slide”
means to draw it out to the left. ‘‘To push
in slide” means to push it in to the right hand.
Unless otherwise stated the red center is to
be used until it is directed Lo reverse centers,
when the blue center is used.

The examples will'now be set out.

(@) To find the dzimuth of a celestial hody
when rising:

Rule: Set the radius at the latitude. Re-
movetheslide. Thesine vertical of declination

{read from slot) cuts the radius at cosine azi-

sine 0
cosine 2’

Example 1: (From Stebbings Naveigation,
page 187.) Required the sun’s azimuth when

muth,(lower reading.) Cogine =

aslatitude and hour angle.

S

rising when declination is 8°.58' N, and lati-
tude 52°.20' N. The resultis N. 75°.13' E. Set
the radius at latitude 52°.20'. Remove the
slide. The sine vertical from 8°.58 in slot
gives cosine azimuth N. 75 E. on (lower read-
ing) radius. This is named N. because decli-
nation is N. and E. because rising.

(8) To find the greatest azxmuth or azimuth
at greatest elonwatlon This phenomena can
only occur when the celestial body has decli-
nation of the same name and greater than the
latitude of observer; but since there are al-
ways stars under these conditions and consid-
ering that at this phenomena the body is fixed
at azimuth, only altering the azimuth one-
quarter of a degree in one hour of time or
thereabout, we have a very useful observation
for determining compass error brought within
the limits of practical navigation by means of
the spheroplane, hitherto little used except by
SUrveyors.

Rule: Set the radius at latitude. The cosine
vertical of declination (from slide) cuts the ra-
dius at sine azimuth, (upper reading.) Name
COS.
sin. 2’
Example 2: Given latitude 10° 8., declina-

Cosine $=-=—

‘tion 20° 8. Required the greatest azimuth.

Set the radius at 10°. The cosine vertical of

90° (read from slide) cuts the radius at sine

72°.6. Davis’s time azimuth tables, page 81,
will verify this.

Example 3: Required the greatest azimuth
of star Canopus from an observer in 30°.30
south latitude. Star’sdeclination is52°.8%8'S.
Set radius at 30°.80". The cosine vertical of

52°.36' (from slide) cuts the radius at sine

azimuth S. 44°.9. As is the case with other
azimuths, we shall require to know either the
hour angle or altitude at this phenomena.

(¢) To find hour angle (time) of body when
at its greatest az1muth having given the azi-
muth just found and declination:

Rule: Mark the sine declination or radius,
(upper part.) Revolve the radius until the
marking cuts the cosine horizontal of azimuth,
(left vertical.) The setting is the hour angle
CoS. 2
sine 0’ -

Example 4: Given azimuth 72°.6 and dec-
lination20°.8. Mark sine 20° on radius. Re-
volve this until it cuts cosine horizontal of
(azimuth) 72°.6 from (left vertical.) The set-
ting (read from the arc) is 4™.4™., the hour
angle. This may be verified by Davis’s tables,
page 81.

Example 5: Required the hour angle of the
star Canopus, declination 52°.6 S, when at its
greatest azimuth, 44°.9. Mark sine 52°.6 on
radius. Revolve this until it cuts the cosine
horizontal of 44°.9. Thesetting 4™.18" is the
hour angle. )

- Note. In the case of ﬁndln(r time of great-
est azimuth the azimuth is always reqmred

{(read from arc) sin. H =
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also, so 1t is more convenient to find the hour
angle through the azimuth.

() To find the altitude when at its greatest
azimuth:

Rule: Setthe radiusatdeclination. Thesine
horizontal of latitude (read from arc) cuts the
radius at the siﬁne altitude (read from upper

part) sin. 6 = M
sin. @
Example 6: Latitude 10°.S., declination

20°.8. Required the altitude when at greatest
azimuth. Set the radius at 20°. The sine

“horizontal of 10° (read from arc) cufs the

radius at sine altitude 30°.5. (By calculation
this is 30°.81".)

Example 7: Latitude 80°.80'S. Required
the altitude of star Canopus, declination
52°.88'S., when at greatest azimuth. Set
radius at 52°.88'. The sine horizontal of lati-
tude 80°.80' cuts the radius at 39°.6. (By cal-
culation this is 39°.41".)

(¢) To solve the timeazimuth problem, tan-
gent method. In the following instructions

--if the hour angle is over six hours it must be

subtracted from twelve hours and the re-
mainder used for the hour angle.

Rules: Mark cosine declination on radius,
(lower reading.): Set the radius at the hour
angle. Thesine horizontal that cuts the mark-

ing is arc I, (read from arc.) Reverse the ra-
dins. Mark the plane marker and place

radius over the intersections of cosine vertical
of hour angle (read from arc) and tangent
horizontal of declination, (from right vertical.)
The setting of radiusis arc ITif the hour angle
be less than six hours; but this arc must be
subtracted from one hundred and eighty de-
grees if the hour angle be over six hours.
For arc I1I add arc X1 and latitude, if latitude
and declination are of contrary names; but
subtract them if of the same. For azimuth

- when arc I is contained on the right vertical
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(the general case) mark with plane-marker
and place radius over the intersection of tan-
gent horizontal of arc I (from right vertical)
and sine vertical of arc IIL, (from slot.) The
setting is the azimuth. Whenare Iis not in-
cluded on the right vertical, proceed as fol-

-lowrs: Set radius at arc 1. Sine horizontal of

arc 111 (from arc) cuts radius at cotangent
vertical of azimuth. Name azimuth opposite
to thelatitude, except when latitude and decli-
nation aré same names, with latitude less than
arc 11,

Example 8: Hour angle or time 3%.24" p. m.,
declination 19°,8., latitude 50° N. Mark cos.
19° on radius (lower part) and set radius at
hour angle 8%.94". The sine horizontal read
from arc is arc I 47°.4. Reverse radius to
blue, center mark with plane marker and place
radius over the intersection of cosine vertical
hour angle 8%.24™ (read from arc)and tangent
horizontal declination 19°, (from right verti-

" cal.) The setting is (arc II) 28°.7, which, as
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latitude and declination are contrary names,

811,625

has to be added to latitude 50° and gives (arc
111)78°.7. Now mark with plane marker and
place radius over the intersection of tangent
horizontal (arc I) 47°.4 (from right vertical)
and sine vertical (arc I11) 78°.7, (from slot.)
The setting is azimuth S.47°.9 W.

Example 9: This shows theé case of a star
with high declination and with a large hour
angle. Latitude 51°.80'N. Required theazi-
muth of star Capella, declination 45%.54' N.,
when its hour angle is 9™.36™ west. Here, as
the hour angle is over six hours, we must sub-
tract from 127, giving 2%.24*. Mark cosine
declination 45°.54' on radius (lower) and set
it at 2%.924™  The sine horizontal (read from
arc) is (arc 1) 24°.2. Mark and place radius
over intersection of cosine vertical hour angle
2".24™ (from arc) and tangent horizontal dec-
lination45°.9 fromright vertical. Thesetting
is arc 51°.9, which has to be subtracted from
one hundred and eighty degrees. Since hour
angle is over six hours, the remainder, 128°.1',
isarcIl. FromthisarcIlsubtractthelatitude
51°.5; gives 76°.6 arc III. Mark and place
radius over intersection of sine vertical (arc
I1I) 76°.6 (from slot) and tangent horizontal
(arc I) 24°.2. The setting N.24°.7 W. is the
azimuth. By calculation this works out at
94°.44% .

Example 10: Since in the foregoing Ex-
ample 9 the declination is over forty-five de-
grees, we may show how to find IT if declina-
tion were not on the scale of tangents, as fol-
lows: Settheradiusatdeclination 45°.9. The
cosone horizontal of hour angle in arc 36°
(from left vertical) cuts radius at cotangent
vertical of (are IT) 51°.9 from top, as before.

The investigation of the time azimuth prob-
lem, tangent method, as used above, is as fol-
lows: In'a diagram let P mark observer’s pole
and polar angle, = his zenith, S the position of
heavenly body, Q the equator, Q Z the lati-
tude, S Z M the azimuth required. From S
draw the arc of great circle at right angles to
P Q, cutting P Q at M, then intriangle PS M.

S M. = arc L sin. arc I = sin. P. sin. P S.

Sin. P:-Si;:‘——l%—l QM=arc TI=(90°—P. M.)

Cos. P =-cot. Q M cot. P S. _
SV __cos. P
Cot. are I1= tan o

or, it declination is large,

cos. P
cot.arcII

Sine Z M = cot. SZ M tan. S M.

Tan, 6= ZM=arcI=Q ZLQ M

sin. arc IIT
tan. arcl ’
or, it arc I is too great for tangent scale,

Cot. azimuth =

sin. arc IIT

Tan, arc I= 2= ———,
cot. azimuth
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(#) To solve thealtitude azimuth problem:

Rule: Given the latitude of observer, the
altitude and polar distance (the polar distance
is always the declination subtracted from
ninety degrees) of a celestial body, to find its
azimuth write down the latitude and under
it the altitude. Add them if latitude and
declination are contrary names. Subtract
them if same names. Call result M. Mark
cosine altitude on radius, (lower marking,)
which set at latitude. The cosine vertical
which cuts marking, read from slide, gives N.
Reverseradiusandsetitat N. Withdrawslide
until polar distance on itisat the index. The
cosine vertical of M on the slide will cut ra-
dius at cosine azimuth, which name asdeclina-
tion and hour angle.

Example11: ( Taken from Stebbing’s Nawi-
gation, page 190.) Sun post Meridiem, given
latitude 27°.45 S., N. polar distance 67°.57,
Add latitude 27°.45'S. to
altitude 22°.18', giving M 50°.8". Mark co-
sine . 22°.18' on radius (lower part) and setat
The cosine vertical that cuts the mark-
ing, read from slide, is 85°, or N. Reverse
‘Withdraw slide un-
til the polar distance 67°.57’ onitis at the in-
dex. The cosine vertical of M 50°.3" from

‘slide will then cut radius at azimuth N.

47°.6' W. (Stebbing gives N. 47°.87" W.)
Example 12: (Stebbing’s Ncwz'gation, page
194.) Sun antemeridian, given
30°.50’ N., N. polar distance 82°.53', altitude
27°.7". Reqmred azimuth. Subtractaltitude
7°. 7 from latitude 30°.50° N., giving
M=8°43". Mark cosine 27°.7 on radius
and set itat 80°.50". The cosine vertical cut-
ting the marking givesN. 40°.1' onslide. Re-
verse radins. Set it at 40°.1. Withdraw
slide until cosine polar distance 82°.53' on it

" isattheindex. The cosine vértical of M 3°.43’
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will then cut the radius at versine azimuth
N.98°.3' E. (Stebbing gives N. 98°.14' E..)

Example 13: Thisisanextremecase. Star
Capella east, given latitude 51°.30' N., N. po-
lar distance star Capella 44°.6', true altitude
12°.12'. Subtract altitude 12°.12" from lati-
tude 51°.80" N., giving 39°.18'. Mark co-
sine 12°.12' on radius and set it at latitude
51°.80". Thecosine vertical cutting the mark-
ing (read-fromslide) gives N 52°.6". Reverse
radius and set at (N.) 52°.6'. Withdraw slide
until polar distance 44°.1' on it is at the in-
dex, when the cosine vertical of M. 39°.18’
from the slide cuts the radius at N. 24°.7' E.,
the azimuth. A calculation by logarithm
gives this as N. 24°.443" E.

(¢) Tosolvethe hour-angle problem. Given
the latitude of observer, the declination, and
zenith distance of a celestial body to find its
hour angle:

Rule: Write down the latitude, under it the
declination. If they aresame names, subtract
them, if of different names add them. Call
reault M. Mark cosine declination on ra-

latitude,

dius (lower marking) and set it at latitude.
The cosine vertical which cuts the marking
(read from slide) gives N. Reverse radius
and set it at N. Withdraw slide until index
is at zenith distance on the slide. The co-
sine vertical of M {from slide) will then cut
the radius at the versine of hour angle. If
the body be on the horizon, proceed the same
way exactly, except that the slide is not with-
drawn. This latter would give the time of
geocentric or true rising; but for the time of
apparent rising, except in the case of the
moon, the zenith distance would be greater
than ninety degrees, and the slide must be
pushed in by thisexcess. The same principle
applies to the problem of finding when twi-
light begins or ends, which is assumed to be
when the sun is eighteen degrees below the
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horizon, so that the slide in this case must be-. -

pushed in eighteen degrees, and proceed as in
the general case. :

Example 14: General case, Stebblna’s Na/m,-
gation, page 139. Sun antemerldlan, given
latitude 40°.16" N., declination 10°.48" N.,
zenith distance 70°.10" N. Required, sun’s
hour angle from latitude 40°.16" N. Sub-
tract declination 10°.48' N., giving M as
99°.98'. Mark cosine 10°.48' on radius (lower
part) and set it at 40°.16".. The cosine ver-
tical that cuts the marking (read from slide)
is N. 41°.4. Reverse radius and set it at
41°.4. 'Withdraw slide until the zenith dis-
tance 70°.10" on it is at the index. The co-
sine vertical of (M) 29°.28' from slide cuts
the radius at versine hour angle 4".52™.1%
(Stebbing gives 4".52™.16%.)

Example 15: Stebbing, page 140. Sun post-
merldlan, civen latitude 39°.25' S., declina-
tion 28°.14" N., zenith distance 74°. 13". Re-
quired, the apparent time at place. Add
latitude and declination, giving M=62°.39".
Mark declination 28°.14" on radins (lower
part) and set radius at latitude 89°.25'. The
cosine vertical (read from slide) cutting the
marking is N=44°.7. Reverse radius and
set it at (N) 44°.7. Withdraw slide until in-
dex points to zenith distance on slide T4°.13'.
The cosine vertical from (M) 62°.89' on the
slide will then cut the radius at versine hour
angle (time) 2°.50™.5°%. (Stebbing gives 2"
50™.255)

(2.) To solve the exmeridian problem. The
green scales only are to be used in this prob-

lem. The scale on the lower part of the slide -

is termed the ‘‘slide-scale.” The twin scale
immediately below it is termed the ‘‘stand-
ing scale.” The zero on either scale is, re-
spectively, the index of the other scale. The
lower scale of all P, divided to equal parts,
are minutes of arc in reduction, to be added
to the true altitude when observed above the
pole to obtain the meridian altitude. This is
called the ‘‘reduction-scale.” The vertical
scale to the extreme left is called the ‘‘hour-
angle” scale. Each division is one minute of
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time. Given the latitude by account, the | or .

declinations, and the hour apgle in minutes cos, & = ©08 P base

of time, to find the reduction: " " " ver.Z hypotenuse’

Rule: First, to find N, if latitude and dec-
lination are contrary, push in the slide until

-its index cuts at declination on standing scale.

Then the latitude on slide cuts at N. on stand-
ing scale, which note. If latitude and decli-
nation are same, withdraw slide until index
on standing scale cuts declination or latitude,
whichever is least on slide. Then the greater
of these two on slide cuts at N. on standing
scale. Use long radius (blue center) and set
it at N. Then the horizontal of minutes in
hour angle, read from hour-anglescale,cuts the
radius- at. vertical of reduction, which read
from reduction-scale. The T-square marker
is useful in this problem for carrying the di-
visions in: outer scalés into the plane and for

‘contrawise prolonging the reading to the scale.

. Example 16: (Stebbings Navigation, page
160.) " Given latitude account 47°. N., (this is
fifty - eight minutes in error,) declination

- 20°.47'N., hourangle 20.1 minutes. Required,
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the reduction to be applied to true altitude to

obtain meridian altitude, latitude and declina-.

tion same names. Withdraw slideuntil index
of standing scale cuts 20°.47". Then 47° on
slide cuts the standing scale at (N) 84°.7. Set
the radius-at (N) 34°.7, the horizontal from
20.1* on the hour- anole scale cuts the radius
at the vertical of reduction 19'.3. (Stebbing
gives 19.6.) 1t .is to be noted that 20" would
give the exact latitude. A second approxima-
tion would give this; but this is hardly nec-
essary even in this extreme case with latitude

- {Jaccount 58' in error.

(¢) The formula used in rlght angles and
quadrantal spherical problems are the same

{40 as generally used for these problems and are
hereinbefore respectively set-out after the

rule for each problem. The formula for ob-
lique-angled sperical problems, altitude, azi-
muth, hour angle, and exmeridian problems
are here given, the usual notation being adopt-
ed, when Z equals azimuth, .6 equals declma—
tlon, @ equals altitude, @ equals latitude, H
equals hour angle, z equals zenith distance,
p equals polar distance from nearest pole. In
the practical rules % is called M and @ is
called N.
The altitude azimuth:

" Cos. 7, — %08 D p —sin. D sin. a
cos. @ cos. a

Versine Z = %0 (L @) — cos. V3
cos. P cos. @ _
Let (@ L a)=M, let (cos. M—cos. p)=cos. ¥,
also let cos. @ cos. a = cos.
* eos. @ = COS: © __ _ base

Tt .¢os. @  hypotenuse’

Then
cos. P
ver. Z. = cos. i )

The hour angle problem:
Cos. H = %5 2z —sin. @ sin. 6

cos. P cos.
Vers, H = €05 (@ L J)—cos. 2z
T cos. 9 cos. o
Let (P L 6) = M, let (cos. M — cos. 2= cos P,
also let cos. @ cos. 0 = cos.
T 45___905-@: base .
08 cos.0  hypotenuse
Then v
_cos. ¥
vers. H 005 0
or »
os. @ = 00S: P base

~ Vers: H  hypotenuse’

“The Exmeridian: A formula very gener-
ally used in modern methods of working this
problem and one easily deduced from that
given in Godfrey s Astronomy is

h2
30. 36 (tan. @ L tan. 6)

where 7 is the reduction requlred % equals
minutes of time in hour angle, 30.56 is a con-
stant. The only alteration: necessarv to adapt
this to the spheroplane is to let (tan. @ L tan.
d)=tan. N. Thern

Tan, N= — %
T X 8056

It can easily be:seep that the spheroplane
need not. necessarily be made exactly as de-
scribed. - Other scales may be added. to the
plane and existing ones varied, as shown:in
the explanation already given. Other slides
with additional scales may be introduced, as
also additional radii divided to other scales
may be also used with the same plane; partic-
ularly one divided to tangents. These altera-
tions would .extend the scope of the sphero-
plane in particular cases; . but the construction
already given is most adaptable for general
use. The spheroplane might be made with
fewerscales for individual problems or groups
of problems, =~

Having now fully described and ascertained
my said invention and the manner in which it is
tobe performed,IdeclarethatwhatIclaimis—

1. Animproved instrument for graphically
solving spherical triangles on a plane surface
consisting essentially of a rectangular plane
surface on which. are inscribed a graduated

r=

perpendlcular
base

quadrant and various trigonometric and other

scales in relation to said quadrant a slide on
the slide-rule principle having therein a.scale
of cosines and a scale of tangents in relation

to said graduated quadrant and covering up
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the numbering of a scale of sines also in rela-
tion to said graduated quadrant a center-pin
on said plane surface at the center of the
graduated quadrant and a removable trans-
parent radius bar or bars having centers
adapted to take on the center-pin of the plane
surface and having thereon scales of sines and
cosines in relation to sald center and the
graduated quadrant of the plane surface sub-
stantially as herein described and explained.

2. Animproved instrument for graphically
solving spherical triangles on a plane surface
consisting essentially of a rectangular plane
surface on which are inscribed a graduated
quadrant and various trigopometric and other

. scales in relation to said - quadrant a slide on

‘20

25

the slide-rule principle having thereon a scdle
of cosines and a scale of tangents in relation
to said graduated quadrant and covering up
the numbering of a scale of sines also in rela-
tion to said graduated quadrant a center-pin
on said plane surface at the center of the

graduated quadrant and a removable trans-’

parent radius-bar having two centers each
adapted to take on the center-pin of the
graduated quadrant of the plane surface and
having scales of sines and cosines in relation
to one such center (red) and having a scale of

o

versines in relation to other said center (blue)
which latter center is distant from the former
the radius length of the graduated quadrant
of the plane surface substantially as herein
described and explained.

3. Animproved instrument for graphically
solving spherical triangles on a plane surface
consisting essentially of a rectangular plane
surface on which are inseribed a graduated
quadrant and various trigonometrical and
other scales in relation to said quadrant a
slide on the slide-rule principle having there-
on a scale of cosines and a scale of tangents
in relation to said graduated quadrant and
covering up the numbering of a scale of sines
also in relation to said gradunated gquadrant a
center-pin on said plane surface at the center
of the graduated quadrant and removable
transparent radius bar or bars having scales
as,set forth inscribed thereon substantially as
herein described and explained.

Intestimony whereof I have signed my name
to this specification in the presence of two sub-
scribing witnesses.

HERBERT HENRY EDMONDS.

Witnesses:

Frep WaLsH,
Prrcy NEWELL.
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