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The MATHEMA Universal Logarithmic Slide Rule

by Dr. Ing. Eugen Moeller, Darmstadt.

History of the Logarithmic Slide Rule
The logarithmic slide rule was invented and developed mainly as a result of

the formulation of logarithms by Jost Birgi (1407) and Lord John Napier (1614),

the plotting of logarithmic scales by Edmeond Gunter (1624),

the adoption of a second sliding ruler by Wingste (1627),

the arrangement of two similar {ogarithmic rules by William Qughtred (1630),

the invention by Seth Partridge of the slide running in a stock (1657),

the formulation of double logarithmic scales by Raget (1815),

the re-invention of the cursor by Mannheim (1851)

and the classical collaborative work “Darmstadt” under the direction of Prof. Alwin Walther (1934).

Construction of the Mathema Slide Rule
The Mathema Slide Rule has been created for use in practical mathematics and for the mathematical treatment of
the natural sciences. With such purpose in view this Slide Rule is constructed as a double-sided rule (Duplex type)
and has been provided with scales of alf the elementary functions to such a degree of completeness that calcu-
lation can be carried out in as direct a manner as possible, thus not only making these coleulations simple to
achieve but also ensuring maximum accuracy. The manipulation of the Mathema Slide Rule is facilitated in no
small degree by the arrangement on the front of the Rule of the scales which are most frequently used, the introduc-
tion of a common unit for the arguments of circular and hyperbolic functions, the designation according to formula of
the primary functions and their inversions, the logical numbering of the scales and the long length of the scales and
the markings on the cursor.
The stationary principal scole, to which all the other scales on the stock are related, is designated by Y.
The movable principal scale, to which all the other scales on the stock are related, is designated by v.
For easier handiing, the two main scales are provided both on the front (lower slide and stock) ond on the back
(upper slide and stock); they are specially marked in the decade section (0-1-10).
The primary functions are designated by f(X) or f(x), according to whether they are based on principal scale Y or
principal scale y. Here the usuval arrangement applies:

Y = f{X)

y = 1(x)

The Inverse functions start from the principal scales Y and y are designated by #(Y) or f(y).
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In order to make it possible to represent the functions in the range which is of practical importance, some scales are
plotted in several stages.

It is for this same purpose that in the case of many of the functions there are scale extensions beyond the principal
decade of the principal scales.

In the case of some of the functions, the repetitions of the scale which also extend beyond the principal decade of
the principal scales make it unnecessary in many cases to change the position of the slide from one terminal posi-
tion to the other.

All the scales running from left to right are in black. The retrogressive scales, that is to say those whose numbers
increase from the right towards the left of the slide rule, are in red.

The common unit used for the arguments of the circular and hyperbolic functions, which are related to one another
and are therefore often coupled with one another in equations and formulae, is the metric degree. For the easy con-
version of metric degrees into circular measure (radians), the cursor is provided with setting marks for the factor /2
on the normal scales.

The positions of the decimal point in the figures given on the Mathema Slide Rule are uniformly based on the trigo-
nometrical and Pythagorean scales. This does not apply to the scales with functional expressions in brackets.

For the sake of easy legibility, the designations of the numerical values have been kept short.
A point preceding or following a figure signifies that so many noughts should precede or follow this figure as indi-
cated by the small whole-number power of ten index given near by.

The scales, except those for eX or log Y are divided irregularly. In particular, the intervals between the marks on the
scale at different parts of a given scale are of different lengths. Units in the decimal system are not always divided
into 10 intervals, but according to special requirements, either into 5 or 2. The mutual correspondences of the scale
values of the various functions are generally established by mecns of the principal hair line of the cursor. At the
left-hand end of the Slide Rule it is an advantage to use the left hair line of the cursor and at the right-hand end
of the Slide Rule to use the right hair line of the cursor, if the eX or log Y scales are not being used. The distances
of the hair lines on the cursor from one another correspond to the factors /2, and /4.

The paragraphs giving examples of computations in this booklet and on the back of the Mathema Slide Rule are
arranged from left to right in the order of the individual computation stages and therefore in general do not agree
with the spatial distribution of the values on the scales. The functional scales required for the examples are given
as partial reproductions of the inscriptions.

The Theory of Slide Rule Computation

The principle of computation using the logarithmic slide rule consists in converting the addition and subtraction (which
can be carried out mechanically) of sections of the rule into the two higher processes of calculation, by virtue of
the fact that these sections of rule represent the functional values in question on a logarithmic scale.

We get the multiplication and division of the natural numbers, if the logarithms of the natural numbers are plotted
on the two scales which are used in conjunction with one another, Thus,

log a + log b = log aXb
fog a —logb = loga-=b

The starting point and finishing point of the simple logarithmic scale is the number 1, because 1 is a factor which has
no effect on other numbers and fog 1 = 0.

The scales with the logarithms of the natural numbers are the normal scales of the Slide Rule; these are the princi-
pal scales in relation to the other scales.

Powers and roots of the natural numbers are obtained if one of the scales is a principal scale and the other is a
scale of double logarithms of the natural numbers. Thus,

il

log (log a) + log n = log (n X leg o) log (log an),

1
log (log 0) — log n = log (L X log @) = log (log an).
n

The starting point and finishing point of the double logarithmic scale is the base of the fogarithms, as their fogarithm
= 1 and the logarithm of 1 = Q.
A reversal of the process of calculation gives the exponents:

log (log an) — log (log @) = log (log a” + log a) = log n

1 1

log (log ah) — log (log @) = log (log an = log a) = log % 1
The exponents n and 1/n are also the logarithms to base a of the antilogs an and an respectively.
Generally speaking there is no need for any extension of the calculation

log (log @) + log (log b} = log (log aleab) = log (log blogq)
It is sufficient it computations of this and similar types can be carried out on the Slide Rule by means of simple steps.



On the other hand, in order to increase the possibilities of using the Slide Rule in mathematics, physics and engineer-
ing, it is important that the elementary functions as well as certain other functions should be included on the Slide
Rule and shown in rejation to the principal scales. With the scales of functions f(X) and f(x) it is possible by project-
ing them on to the principal scales or on to the scale of double logarithms to carry out all the higher mathematical
operations which correspond to the following relationships:

log f(X) + log f(x) = log ({(X) X f(x)),

log f(X) — log f(x) = log (f(X) <+ (x)),

log (log (X)) + log f(x}) = log (log f(X)f(x)),

log (log (X)) — log f(x) = log (log f(X)11(x)).
The relations between the scales of functions are also of importance. By transferring from a scale {(X) to a scale f(Y),
the function f(X)f(y) is found, because the value Y is replaced by the function f(X).
The same applies to transferring from a scale f(x) to a scale f(y).
When transferring from a scale f(X) to a scale f(y), f(X) still requires the factor which is shown opposite the end cali-
bration Y = 1 on the principal scale.
A corresponding state of affairs obtains when transferring from a scale f(x) to a scale {(Y). The factor for f(x) lies
opposite y = 1 on Y.
By making use of the marks on the cursor it is also possible to introduce = factors when transferring in this way.
On account of the co-ordination of the functional scales with the principal scales, they too are in logarithmic form.
Nevertheless, the general fact that they are logarithms is not shown in the designations and the figures marked on
the scales, but for the sake of simplicity the antilogs are printed direct by the calibrations of the scales. The fact
that we are dealing with a legarithmic slide rule is quite sufficient to remind us of the true state of affairs.
The functions are included on the Slide Rule in continvous form. This means that they are easy to interpolate but can
only be set and read off with a limited degree of accuracy. lf L is the length on the slide rule which is used to repre-
sent the unit log e = 1, then the length z of the logarithmic section of rule of size y is:

z =L X log v.
When setting and reading errors amount to the length Az, the relative error of the principal scale y is:

Ayly = Az
it is therefore constant and independent of the functions f(x) which may have been transferred on to the scale Y.
If L = (deczde length of 200 mm) /log 10 == 84:8.. mm and Az = L/S00 = 017.. mm., we get the relative error on the
principal scale y as Z%a.

if n multiplicaticns or divisions follow one another, the apparent error will grow to Vn times as much, in accordance
with the Gaussian law of errors.
The length z of the logarithmic section of rule of a function f(x) related to the principal scale is
z = L X log f(x).
If the setting and reading errors amount to a length A z, the relative error on the scale of functions {(x) is
A xIx = A z-H{x)/Lx 1{x).
The errors expressed in %w are shown in the following table for when A z/L = 1/500:

f(y) y = 00t 01 1 10 i(y)

x 2 2 y

1/x —2 —2 Uy

UV_)Z —4 —4 1y

VX 4 4 Y:
V=% —0-02 —co V1i—y®
V=1 0-02 1 Vit y?
sin x 2:03 oo arc sin y
tan x 199 1-27 arc tan y
sinh x 1.99 1-61 066 arc sinh y
cosh x oo 0-67 arc cosh y
tanh x 2-03 oo arc tanh y
ex o0 0-87 ey

log x 0-02 02 2 20 log vy

In describing the calculation process a simple scheme has been employed, in which values on adjacent scales are
marked with one oblique stroke (/) and the transition from one scale section to another with two oblique strokes (/).
The scales are indicated by placing the function f(x) in front of the letters Sc; the setting or reading value is shown
subsequently. The letters b. p. mean the adjustment of the slide to the basic (zero) position, in which the main scales
coincide.

The Scales of the Mathema Slide Rule and their Relationship to one another.

The Principal Scales X and y and their reciprocals 1/y

The sections corresponding to a decade from 01 to 1 and from 1 to 10 etc. on a logarithmic scale of the natural num-
bers repeat one another exactly, because the logarithms only differ by the figure of the power of ten. One decade
section of the principal scales Y and y therefore already contains all possible numbers, if we disregard the place
values. Use is made of this in that each calibration for a whole number power of ten is regarded as the starting or
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finishing calibration of the principal scale. This means that the slide must be transposed in relation to the principal
scales from one position to the one which is congruent with it at the other end of the rule, so that the result of the
computation will be brought within the convenient range of the slide rule.

The scale of !/y is a retrogressive principal scale according to the relationship log /y = — log vy.

This scale makes it possible to convert a multiplication by a into a division by /a and vice versa.

The relationships between the principal scales Y on the one hand and y and '/y on the other are those of multiplica-
tion and division,

As a rule, single computations are begun by moving the cursor, so that when the slide has been moved the result
will be given within the principal decade and so that in the case of longer expressions it is possible to continue the
computation immediately.

In the case of tabular calculations it is a good plan to set one end marking of the slide opposite to the constant
term on scale Y so that it is possible either to multiply by variable factors by means of scale y or else to divide by
variable divisors by means of scale /y.

The setting of the numbers on the principal scales, which can be carried out with the help of the hair lines on the
cursor or in the case of scales Y and y by means of a terminal calibration of the other scale, is effected without
regard to the position of the decimal point within the sequence of digits. In the case of numbers such as 1234, the
4th digit can only be set by estimation. In the case of figures such as 8765 it is hardly possible to give sufficient
attention to the fourth digit.

A division such as 2468 < 8765 = 281-6 is carried out by placing the hair line of the cursor on Y = 2468 and then
bringing y = 8765 on the slide underneath the hair line of the cursor. The result is found on scale Y opposite a ter-
minal calibration of scale y; Y Sc 2468 / y Sc 8765 // y Sc 1/ Y Sc 281-6.

A multiplication such as 234 X 567 = 1327 X 10% is carried out by setting the hair line of the cursor on Y = 234 and
then bringing 'y = 567 on the slide underneath the hair line of the cursor. The result is found on scale Y opposite a
terminal calibration of the slide; Y Sc 234 / Yy Sc 567 // 'y Sc 01 / Y Sc 1327 X 10

The fast places of simpfer quotients and products can be given exactly by consideration. With these it is usual to
estimate the scales. Examples: 605 <-4 = 15125, 202 X 3 = 606.

The position of the decimal point is found by a rough mental calculation or in cases which connot be seen at a glan-
ce, by estimating the powers of ten. Example: 246800 <+ 0-008765 == approx. 3 X 105+ 2 = 2814 X 10%.

By alternating the use of the cursor and the slide it is possible to carry out continvous multiplication and division.
When this is done, there is no need to read off any of the intermediate results or to set ihe terminal calibration of
the slide on to it. if, for instance, the numbers are all factors for multiplication, then scales Yy and y are used alter-

nately in conjunction with scale Y. In this way, a X b X ¢ X d becomes a —:—% Ke+g. It will be found that 12 X 34 X

1782

(A2 X 34 <56 ~ 0078

a
86X 78 = 17823 10% In the cose of expressions such os bed it is found that

The following is a dicgrecmmatic representation of how the possible combinations of the second stage of the values
a, b and ¢ can be computed.

Hy c b b ¢ Wy
y S b c y
a aclb a albe a abc a ab/c Y

If one facter of a product is in the vicinity of 1 and is known to a very great degree of accuracy, as in the case of
a few Inverse functions on the Mathema Slide Rule, increased cccuracy can be obtained in the multiplication by de-
composing the factor into the figure 1 and the deviation from this figure. Example: 0-9876 X 543 = (1 — 0-0124) X 543 =
543 — 473 == 534-27. By operating in the other way, only the figure 536 is obtained.

If g guotient obtained from accurately known terms is in the near vicinity of 1, or if the difference between these

4 1
terms is known very exactly, this is also a case where decompesition is profitable. Example:jze =1+ 75z = 1002198,

By operating according to the other method, only the figure 1.002 is obtained.

Opposite the initial and terminal calibrations of scales Y and y will be found values which are reciprocals of one
another. This makes it possible to work out fractions as reciprocates, with the numerator and dencminator interchan-
ged, so as to arrive at the results direct. This method is indicated if a primary function related to scale Y is situated
in the denominator of a factor. Example: 678 X cosec 309 = 1/ (sin 309 + 678) == 1493, and in carrying out this computa-
tion it is not necessary to read off sin 309 = 0-454. The result now appears on scale y, the hair line of the cursor
being placed over sin 309 and 678 on the y scale of the slide being brought under the hair line.

By means of the n/2 mark on the cursor it is possible to convert metric degrees d of an angle into the circular mea-
sure in radians and vice versa. Thus

1d = «/200 rad = 0-01570796 rad,
1 rad = 200/ad 63-661084,

Il

n

31415927

63-661984.
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The linear interpolation of numerical values depends on the sufficiently accurate proportionality between the diffe-
rences in the arguments and the differences in the functional values in the cases in question. The Slide Rule can con-
veniently be used for this purpose even when four-figure tables dre used. For repeated interpolations between the
smailer number a and the larger number b, which are both only known with the accuracy of the slide rule, and the
difference between arguments d, the following method is suitable. Place d in the y scale opposite b—a on the Y
scale. Then the number a on the Y scale will be opposite a number a on the y scale and also the number b on scale
Y will be opposite the number ¢ + d on scale y; the changes in the argument which can be seen on scale vy, i.e. the
amounts which vary from ¢ or from ¢+ d as the case may be, give the relative functional values on scale Y and

vice versa. We get the following scheme:

This may be proved by writing it out in full as follows:

c c+d y
b-a a < b Y
¢ = ad/(b—a)

¢ + d = bd/(b—a) = ad/(b—a) + d

The value of ¢ can be rounded off without any appreciable ill-eftect, in order to simplify reading off the changes in

argument.

Example: a = 456; b = 789; d = 2. It is found that ¢ = 27388, which can be approximated to 2:74. For the argument
increase of 0-234 the functional value is 495, if the arguments increase from ato b; otherwise the functional value is 750.

The roots of the quadratic equation

x2

+ ax + b =0

can be obtained in real numbers from the abscissae of the points of intersection of the unit parabola

and the straight line

Y1

Y2

N

— ax — b.

It is sufficient to lay the edge of a ruler on the parabola and make an estimation, if the solutions found are improved

by means of the Slide Rule.

-3 -2 -1 0

Quadratic Unit Parabola y = x

2

XV

10

For this purpose we put the equation we have just mentioned

in slide rule form: X + b = —a
X
and we then set one terminal calibration of the slide over b

on scale Y; by means of the hair line of the cursor it is then
possible, working from scale Y, to find on scale !/y the value
b/x pertaining to any desired value of x. The sum of the two
values should be —a, which must be checked.
As the roots x; and xs obey Vieta's Law, according to which
X1 + X = —a
both the roots will be found on the slide rule ot the some time.
Example: x —«szz = 3; xy = 356; xa = — 0-56.

If the straight line y/2 does not intersect the parabola y, and
the roots are therefore conjugate complex, the following for-
mula, which is also valid, is used:

X1, X2 = —a/2 + V a*/4—b.
The criteria of the co-ordinates of the diagram of the quadra-
tic unit parabola on the left may be used as numerations if it
is necessary to vary the scales of the co-ordinates. When
doing this, care must be taken to see that the equation of the
quadratic unit parabola is maintained. If, for instance, the size
of the abscissa is doubled, the size of the ordinate must be
quadrupled.
The principal scales are svitable for the use of Horner's Method
for the determination of the value of equations of the following
type: be = ayxt 4 a3x®* + a»x®> + a;x + ap
for a given value of x. For this purpose, the coefficients are
written in a series and the system is completed step by step
as shown, when by = a,, by = a3 + byx, b: = a: + bax etc.
By repeated application it is found that ¢ = '(x)/11, d» = *(x)/2!
etc, for the accepted value of x.

1



qay Qs ds ag Qg

4 +bsx +by x +ba x +by x
% / b, ba ba by by = f(x)/0!
+eyx +egx +ca X
¢ cs s ¢ = f(x)/1!
+dyx +dsx
dy ds ds = {"(x)/2!

One of the terminal calibrations of the slide is set on x onthe scale Y. The hair line of the cursor is then set on b , ¢
and d and the products are read off on scale Y. {f, when doing this, one or the other factor should require the trans-
position of the slide, the position of the slide is left unchanged and the multiplication is carried out with the factor
in question either doubled or halved and the result is then accordingly halved or doubled as the case may be.
Example: The cubic equation

x3 — 15:4x2 + 82:65x — 1507 = 0
is relieved of its quadratic term by inserting
This can be carried out with the help of Horner’'s Method by carrying it out in two stages with the figurejgﬁ = 5-1333,

so as to get the coefficients of the reduced equation. The value 3 on scale y is set opposite 154 on scale Y without
the help of the cursor and we get

1 —154 82-45 —150-7
15.4:3 { -+ 5133 —52-70 41537
1 —10:267 29-95 30
4 5133 —26-35 -

1 — 5133 3.60

As will be seen, continuing the method further would cause the second term to disappear. The reduced equation is:
y? - 36y + 3 = 0,
12
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The Parabolic Scales VX..Y?, Vx..y and their Reciprocals 1/Vx .. 1/y*

In view of the great importance of squares and square roots, the parabolic scales and their reciprocals have been
included on the Mathema Slide Rule with the same degree of completeness as the principal scales. As

— log x
log ¥x == B

here too we have normal scales; the divisions on these scales, however, are half the size of those of the principcl
scales. This means to say that it is possible to multiply and divide with them in just the same way as with the principol
scales and their reciprocals and this can be done entirely without having to transpose the slide, which is very con-
venient, for instance in the linear interpolation of tabular values. However, one has in this case to put up with double
the relative error, if the root is not to be extracted from the product or quotient.

As both the square roots and squares of the ordinary numerical series represent a parabola in diagrammatic form,
the parabolic scale is a collective conception for the square root and square scale.

Two decades of the parabolic scale correspond to the decade of a principal scale. When extracting square roots,
which can be done either by means of the hair line of the cursor or one of the terminal calibrations of the slide, one
must start from the left-hand or right-hand decade according to whether the number of digits preceding the decimal

point or the number of noughts following the decimal point is odd or even. Examples: Y123 = 119; 123 = 3:507;

v0-0123 = 0-1109; y0-123 = 0-3507.

If in compound expressions, besides the linear factors and divisors there occur only those in the square or under the
square root sign, the linear terms can be calculated either by means of the parabolic scales or the principal scales.

In the following table the results are shown for the case where a value a is set on scale Y by means of the hair
line of the cursor, a value b on the respective scales of the slide is brought under the hair line and the results are
read off opposite the terminal calibrations both on the stationary and movable principal and parabolic scales.

VX @2 a2/b? ] a2 a?Xb? 1 a2 a2Xb 1 02 a?b 1 Y2
Vx b2 i b2/a2 /b2 1 /a2 b2 /b 1 1/a2b b 1 b/a2 y2
Y x b2 1 a?/b? b2 1 a2b2 b 1 a?b b1 a2b 1/y2
1y /b 1 a/b b ] ab Vb 1 aVb A a/Vb iy
y b 1 blo /b1 ab Vb 1 aVb | Ve 1 Vbla y

Y a o/b 1 a ab 1 o aVb 1 a a/Vb 1 Y

13



The next table corresponds to the preceding one, except that in this case a is on the VX scale.

VX a a/b? 1 a ab? 1 a ab 1 a a/b 1 Y2
Vx b2 1 b2a /b2 1 t/ab? /b 1 /b b 1 bla ¥2
WV Vb2 1 o/b? b2 1 ab? b 1 ab /b 1 a/b 1/y?
7y /b1 Vab | b 1 Vab Vb 1 Vab Vb 1 Valb iy

y b 1 b/Va b 1 WVab | YVab T /Vab | Vb 1 Vb/a y

Y Ve Vab 1 Va Vab 1 Va Vab 1 Va Vab 1 Y

The upper mark n/4 on the cursor, which counts from the principal line = 1 like the upper mark 7/2, makes it possible
to set the area of a circle of given diameter direct from a principal scale on to the corresponding parabolic scale or,

conversely, to set the diameter of a circle of given area. Examples: x/4 X 2345 = 432 X 104 ]/ﬁx 4/x = 54.55.

The cube and the square root of this and also the cube root and the square of this can be calculated by means of
the principal and parabolic scales in such a way that they appear on stationary normal scales ready for immediate
continued calculation.

In the following representation of the formation of the 3rd pewer it is immaterial on which decade of the reciprocal
parabolic scale the initial value is set. When computing the square roots of these, however, the decade rules for the
extraction of square roots must be followed at once when setting the initial figures, because these terms are enclosed
within brackets. Examples: 232 = 2.828; 2032 = 89-4.

When forming the cube reot, the fact is that it must be found by trial and errer, symbolised by a double line. The values

on scales 41’x .. ty? and Y under the cursor must agree. When doing this it is immaterial which decade of the sta-
tionary parcbolic scale is used for setting the initial figure, provided the approximate answer is estimated first, so
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that it is possible to sefect the correct one from the three possible positions of the cursor. In the case of the square
roots, the corresponding decade rules must be observed when setting the initial figures, because these terms are
enclosed in brackets.

Examples: 223 == 1.587; 2023 = 7.37; 20023 = 34.2,

VX a® 1 b L3 ) v2
Vx 1 1/a® 1 1/p18 /h y2
WV x a ] a® 1 I b 1/y2

"y 1 (a*?) 1 (b (V'b) y

y 1 (17a%?) 1 (/6% (/Vb) y

Y E_ (03/7) 1 1/1_) b113 1 Y

Fourth powers are set on the stationary parabolic scale by means of one terminal calibration of the slide, if the
base is marked on scale Y by means of the hair line of the cursor and the slide is moved so that the base on scale
1y comes underneath the hair line. In this way the square of the base has been squared in relation to the stationary
parabolic scale.

Fourth roots are obtained without trial and error by extracting the square root twice over, and when doing this the
relevant decade rules must be taken into account. Examples: 2 = 1.189; 20"« = 2:115; 200"« = 3.760; 2000°4 = 6-69.

The roots of the reduced cubic equation
x* + ax + b =10

are oblained in real values from the abscissae of the points of intersection of the cubic unit parabola

Y1 = X3
and the straight line
Yo = —ax — b.
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Ay
Laying the edge of a ruler on the cubic parabola ond making an estimate is 5
sufficient, if the solutions so obtained are corrected by means of the slide rule.
For this purpose the equation we have given is converted into its slide rule form:
X "r—b~ = —aq. 4
X
and one terminal calibration of the slide is set against b on the scale Y. By
means of the hair line an the cursor one then obtains, starting from scale Y, the
values of % on scale !y pertaining to every desired value of x* on the fixed 3
parabolic scale.
¥X x2 Y2 2
'y b/x, Wy
Y 1 Y
Y b X3 Y 1
The sum of the two values must equal —a, and this has to be achieved by trial
and error. If one root x; is known, the other two can be found from -3 ] 5 ] >
o xo = =) g2 ?
a 2= T9Ta
which is particularly necessary, if these are complex conjugated. If two roots
of the equation are known, the third is obtained from Vieta’s Law, by completing -1
the sum of the roots to the negative coefficient of the second highest term of
the equation, in this case therefore to zero. /
Example: x3 + 36x + 3 = 0; x; = —0726; X2, X3 = 0363 + 2. -2
The measurement coefficients of the co-ordinates in the adjacent diagram of
the cubic unit parabola can be used as numerations, if it is necessary to change
the scales of the co-ordinates. When doing this it must be borne in mind that 3
the equation of the cubic unit parabola must be maintained. This means that if
the measurements of the abscissae are, say, doubled, the measurements of the
ordinates must te multiplied by eight. /
Cubic Unit Parabola y = x3 14
16 L
-5
"2
The more accurate extraction of the square root from the number ¢ is best carried out in the form
tyYc=2%VatR = atx Y
as x can be determined by means of the slide rule in accordance with the following requirement: e
LR . ) /2
(2a®x) X. Quadratic interpolation. 1 -
This process can also be applied after several stages of -
computation 1o extract the exact root. YO%
Examples: 11123456 = /122500 + 956 = 350 4 1.363 = 351363 1
as 956 ~- (700 -+ 1-363) = 1343, Y_p
11159876 = /160000 — 124 = 400 — 0155 = 399.845,
as 124 - (800 -—0-155) = 0-155.
X X0 ol *2

In the quadratic interpolation of a function, the curve of the function is replaced by a parabola. Let the values of
the function y = f{x) be known for equal intervals between the arguments, and let us either look for the ordinate
Yo = Ay for the abscissa xg + A x < x, or else let us look for the abscissa xo + Ax for the ordinate yo -+ Ay <y1.
The point yo + Ay = f(xo + Ax) should now rest with a reasonable degree of accuracy on the substitute parabola;
the value desired can then be determined by direct or inverse interpolation.

The substitute parabola must pass through both points Xo, Yo and xy, yi1. For the sake of simplicity its axis should be
parallel to the ordinate axis. A suitable rule to act as a further condition for the parabola is that the ordinates of
the substitute parabola should be the arithmetical mean of the ordinates of parabola 1 though the point x , y and
parabola 2 through the point X, ya.

If the linear interpolated term is L and the quadratic interpolated term is Q, then by definition
DX Ax \2
o (K )
by =3 "% ; (x,—-Xo
and L = y;—ye— Q.
For the inverse interpolation we get

Ax = (VT +4AYyQIT—1) (x; —xo) Li2Q.
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If the root expression is in the vicinity of 1 and can no longer be calculated with the Pythagorean scales, we find
with the short form k = AyQ/Le,
that AX = (1—k + 2k® — 5k3 + 14k* — 42k5 + 132ks — 429k7 + 1430k® —. +..) (X1 —xo) A y/L.
Q; of parabola 1 is found as follows:

Yo—vVy1 =L + Q

Yi— Y = 2L1 + 4Qq

Qq = (y-1 — 2y¢ + y1) =~ 2
In an analogous manner we find Q; of parabola 2 to be

Q: = (Yo—2y; + y2) + 2.

From which we get Q =({ys— Y1) — (Yo—Y-1)) = 4.

or, expressed in words: the quadratic interpolated term is one-quarter of the difference between the tabular difference
following the interval in question and the tabular difference preceding it.
The substitute parabola is coincident with the cutve given if this is a parabola of the type y = x?; here L = 2x and
Q = 1 when the interval of the argument is 1, as will be seen immediately from the equation (x + 1)2 = x2 + 2x + 1.
On the other hand, the substitute parabola does not agree with the parabola y = yx. This means that before drawing
up a takle of numbers one must test by prior quadratic interpolation to see which of the two variables is independent
and permits of the greater accuracy, if there is any question of choosing between them. Very often it is advisable
to set up one of the variables in the form of the reciprocal.
Example 1. Let us assume that y = ex, where x = 2-30 with intervals of 0-01. It is desired to find y when x = 2315 and
x when y = 1012
if we set this up as follows:

x v tabular diff. Q L
230 9974 182
0100 243
2-31 10-074 425
0-101 249 0-000 506 0-100 743
2:32 10-175 474
0-102 248
2-33 10-277 942

we get el31s == 10074 425 - 0050 371 -+ 0-000 127 == 10-124 923, which agrees with the true value.
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A
Generally specking, one sets 2% on scale Y, and then the linear part of A vy is read off with L on the scale y
Xy — Xo o
and the quadratic part of Ay with the slide in the same position and Q on scale ¥x..y%

When y = 1012, then k == 0:602 2722 and x == 2-314 514, which agrees with the true value.

Example 2. Given y = log x when x = 10-0 with intervals of 01, find y when x == 10-15 and x when y = 2.317.
if we set this up as follows:
X Yy tabular diff. Q L
100 2-302 585
0-009 950
10-1 2312 53%
0-009 853 —0-000 0485 0-009 9015
10-2 2-322 388
0-009 756
103 2-332 144
we get log 1013 = 2312 535 + 0-004 951 — 0.000 012 = 2-317 474, which agrees with the true value.
If y = 2317, k will = —0-002 2088 and x will = 10-145 194, in which the last figure is 1 too large. Both examples of

inverse interpolation have been computed on the calculating machine, in order to demonstrate the accuracy of the
quadratic interpolation in the cases in question. It must be acknowledged, however, that the Slide Rule can also prove
a very useful aid in subsidiary calculations even when using methods which are more accurate In other respects.

The Pythagorean Scales V1-X'..V1-Y’ and VX’-1..V1+Y*

The two Pythagorean Scales inciude in conjunction with the main scale a graphical representation of the ratios cf the
sides of right-angled urit triangles.

The circular scale ¥1—X2.. Y1—-Y? in conjunction with the main scale for one co-crdinate of the unit circle gives the
other co-ordinate and therefore the cosine for the sine of the corresponding angle, and vice versa. The co-ordinates
of the unit circle are the sides of right unit triangles having a hypotenuse = 1, i.e. of hypotenuse unit triangles.

The hyperbolic scale VX*—1.. 1 + Y2 in conjunction with the main scale for ono co-ordinate of the unit hyperbola
gives the other co-ordinate and therefore the secant for the tangent of the corresponding angle, and vice versa. The
co-ordinates of the unit hyperbola are one side and the hypotenuse of unit right triangies with the other side = 1,
i.e. of other side unit right triangles.

19



As the Pythagorean scales and also the scales of transcendental functions must be broken off on one or both sides,
extreme ratios cannot be calculated by means of the Slide Rule in a direct way. In these cases use is made of the
approximation formulae obtained from the corresponding infinite series. When the values of x are small, a linear or
quadratic relation between the independent and dependent variables is usually sufficient.

In many cases the section which is required of the slide when it has been moved extends over the section of Pytha-
gorean (and even other) scales coupled with it. In such cases it is usually possible to get the desired result by first
doubling or halving the given triangle and then halving or doubling the results as the case may be.

The following table shows the mutual relationship between the Pythagorean scales and the main scales when the
slide is in its basic position, if the initial figure set on one of the scales is regarded as being z. The value of these
relationships lies not only in their direct utilisability, but even more in the high degree of accuracy of the results.

VX2 2—22 Vi+1/z2 Vi+17z T+z z Y1+Y2
Vx 1—z2 1/22 1z z 721 y2

1V x Y(—z2) 72 z /2 1/(z2—1) 1/y2
17y Y1222 z Vz Vz 1/Vz21 1y
FT—x2 z Vi—,/z2 Vi—1/z V1i-z V2—z2 AESE

The Trigonomeiric and Arc-trigonometric scales sin X?..arcsin Y and X?..arc tan Y

The trigonometric and arc-trigonometric scales taken in conjunction with the principal scole contain the trigonometric
functions which appear direct on the right-angled unit triangles.
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o X 509 arcion y On the slide rule trigonometric functions are preferred to
seclx _° angles because the functions can be projected on to the prin-
1 V2 Vﬁ"/’Z cipal scale for the purpose of further computation, whilst the
iy oo cosecix cofix 1 1y angles themselves can only'be read off. This is justified in the
v 0 sinlx tonix 1 y fact 1hct~ angles are not often requnred,.but more frequently
‘ we require to know the results of certain angles. The same
Fl=x2 1 cosix 0  V1—y2 also applies to the argument of the hyperbolic functions.
sin x X 1009 arcsin y

Whereas in mathematics radian measure is the natural argu-
ment for angles, the metric degree or the right angle is the
most suitable artificial argument for computations. The naturat
argument of the trigonometric and hyperbolic functions is
often supplied with «the factor x/2, 2x or x so that the right
angle or a whole multiple is obtained when the x factor is
removed. In the Mathema Slide Rule, therefore, the divisions
for the said functions are shown in metric degrees.

The scale sin Xa..2%% x arc sin ¥ (abbreviated as 9sin Y), is

his
closely bound up with the circular scale. As a result of the

common principal scale, Y = y1—X¢ = sin X9. From this we
get Y1 —Y? = cos X9 and the fact that the hair line on the
cursor shows a set of three values for the two sides of the

unit circle

hypotenuse unit triongle and the relative angle.

The side a of any right-angled triangle having a hypotenuse
¢ and the other side b is found from

Right-angled triangles in the unit circle and N

on the unit hyperbola, with equal angles. . b?
The scales in the diagram have not been a=yc—b*=cl/y - (-;)
rendered logarithmic,
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On the Mathema Siide Rule we produce the relationship between the sides of the given triangle and the sides of
the hypotenuse unit triangle in accordance with the second of these equations, For this purpose, ¢ on scale y is set
opposite the terminal calibration 1 of scale Y, or if necessary opposite calibration 0-1. By setting the hair line of the

cursor on b on scale y it will give us_lz_ on scale Y, and in addition y1—(b/c)? on the circular scale and the angle #

on the sin...arc sin scale. By transferring the amount 11—(b/c)? from the circular scale on to scale Y using the hair

line of the cursor, we find the required side yYc*—b? on scale y without altering the position of the slide and we find
the angle a on the sin.. arc scale. The process of computation is shown step by step in the following diagram:

y c b V c2—h2 y
Y 1 b/c V1i—(b/c)? Y
V1-X2 0 VT=(b/q)? AT
sin X2 160 A @ Ssin Y
Examples: ¢ = 678; b = 454; a = 502; « = 53.09; 2 sin vers 409 = 1 —cos 409 = 01910
15 6 1375 738 } sem 409 = (1—cos 409)/2 = sin®209 = 0-0955
15 15 14925 936 i
Expressions like yd*—c2—b? can be worked out by repeating the process of calculation.

Examples: /987265423212 = 6£6.
The hypotenuse c of any right-angled triangle having other sides a and b can be found from:

o o
Cc == ]/c: + b2 = G]/1 + (—0—)1
Let a be greater than b. On the Mathema Scale we produce the relationship between the sides of the given triangle
and the sides of the ‘other side’ unit triangle on the basis of the second of these equations. For this purpose, we set
a on scale y opposite the terminal calibration 1 of scale Y, or if necessary opposite calibration 0-1. If the hair line of

the cursor is now placed over b on scale y it will also give us o on Y, and in addition V1 + (b/a)? on the hyperbolic
scale and the angle § on the tan..arc tan scale. By transferring the amount 1/1”#;(6/6)»é from the hyperbolic scale

on to scale Y using the hair line of cursor, we find the desired hypotenuse Va® -+ b? on scole y without altering the
positicn of the slide. This process of computation is shown step by step in the following diagram:
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tan X9 l 50 3 Stan Y
Y XE] V2 V1+(b/a)2 V1+Yv2
y a > b l Vazt+b2 v
Y 1 b/a ¥ 1+4(b/a)? Y
Examples: a = 678; b == 456; ¢ = 817; § = 3779
15 & 1616 242
15 15 15-075 435

Expressions like a2 + b? + c? can te worked out by repeating the process of computation.

Example: /9872 - 4542 + 3212 = 1227.

Since the some position of the cursor gives both sin X9 and cos X9, it is possible to pass from one of these values to
the other according to the expressions cos arc sin Y and sin arc cos Y without first having to determine the angle.
In addition either of the two values, if greater than 1/¥2 can be obtained more exactly on the circvlar scale than
on the principal scale, by setting sin X9 cos (100-Xg) or cos X9 sin (100-Xg).

Since the some position of the cursor gives both tan X9 and sec X9, it is possible to pass from one of these values to
the other according to the expressions sec arc tan Y and tan arc sec Y without first having to determine the angle.
In addition sec X8 can be obtained with greater accuracy on the hyperbolic scale than from cos X9 on scale ly.
The refations between the trigonometric functions for single, double and halved angles and the algebraic functions
derived from them are shown in tabular form on page 29 together with the analogous relations between the hyper-
balic functions.

The Basic Exponential Functions e-X°and eXand the inverse fogarithmic funclions (-log
Y)%and log Y

The basic function ex? is represented on the logarithmic slide rule by a uniformly divided scale. it is therefore suitable
for any desired extension of the ronge. The stages of the ex9 scale belonging to the various decades of the princi-
pal scale only differ by whole multiples of —2—?_9

log 10 as an additive constant.
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The “Mathema Rule” (new design) has a scale exg dm Y, running to the right.

The details given on pp. 23 and 24 in the Mathema Leaflet, concerning the scale {running in the reverse direction) for
the exponential Heaviside function, with the arguments in “new degrees”, apply here likewise (mutatis mutandis).

The introduction of the new cursor enables us to dispense with the rules given on pages 24 and 25 for the number of
digits in the results, since the cursor gives the power of ten as factors of Y, which belongs to the individual additive
constants of X.

The possibility discussed on p. 28 of composing sinh x9 and cosh x9 from the values of 05 e%x9 using the scale
eX9 ... 9%n Y, can be easily carried out if the slide is left in its basic position. In larger arguments the member 05 e-xg
is usually to be left out of account, so that we may say that sinh xg = cosh x3 = 05 ex9, thus obtaining the continua-
tion of the sinh and cosh scoles provided on the back of the slide. For the terms composed with 05 ex9 the following

applies:

To calculate f(x) <+ 05ex%or 05 ex9 - f(x), y (= 2) is placed underneath the cursor-mark set to ex9, and the read-
ing is taken, above Y = {(X), on the y scale or the 1/y scale, as the case may be.

Example: sin 2608 < 0-5e260g = —0-02725 = —1/367.

To calculate 05 ex9f (x) or 1/0-5 ex9 f (x), we first of all place y = eX9 (leaving the position of the cursor for the
moment unaltered) above Y = 2, then taking the reading above Y = f(x) on the y scale or the 1/y scale as the

case may be.

Example: 0-5 3309 sin 3309 = —79-4 = —1/0-01259. (The exponent 9 means 4 or “degree’.)
24
n 200 +~x X nin10 n 200 < X nin 10 n 200+-a X nin10
1 146-587 1199 4 586348 4769 7 1026-109 8349
2 293174 2389 5 732-935 5959 8 1172696 9539
3 439761 3579 -] 879-522 715¢ 9 1319-284 0729

In order fo make the additive constant, at least for the first 7 stages, a round figure suitable for mental calculation,
nomely to 1409, the cursor of the Mathema Slide Rule is provided with marks which have been displaced by a cor-
responding amount. The edge of the cursor is correspondingly labelled on the top narrow edge.

The number of places of decimals in the result x-X9 within the range of the principal decade of scale Y is determined
from the fact that the number of noughts after the decimal point must be equal to the factor of the additive constants.

Accordingly, the number of places of decimals of the result of e*+X? within the range of the principal decade of the
'Yy scale in the basic position must be equal to the factor of the additive constants.

ebsz = 1009 = 481; M 1 (ex@) Sc 1009 / Y Sc 0481 X 10 = 481

e05r = 1008 = (.208; Bpos: M (ex¥) Sc 1009 / Yy Sc 208 X 10-1 = 0-208
e = ef09 = 1.239 %X 10¢; M 10 (ex9) Sc 409 / Y Sc 01239 X 105

edr = o609 = 07 X 105; B pos: M 1oy (ex?) Sc 409 / Uy Sc 8:07 X 10

@107 = 20009 = 146587 + 439-76 4+ 94:36 = 4.4 X 1010 + 3

M1 (ex9) Sc 9436 / Y Sc 044 X 10 = 44

sinh — . . - _ 112
S 2259 = (eWSF eWS) - 2 = 17435 F 0015 = i7i¢
stanh 099996 = — 22 X In /(1 —0:99998) = (1 + 099996) = — 2 in SO~ 34459

1
Bpos: = Sc 2/ M (e9) Sc 101; = (44 + 1:01) = 34459
el17 X sin 409 = e X sin 409 = 0-805
M 1,?(e><9) Sc 209 /Y Sc1-37; y Sc 1/ sin Sc 409 // y Sc 1-37 / Y Sc 0-805
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e 017 X sin 409 = 209 X sin 409 = 0-429

Bpos: M 1,? (ex9) Sc 200 / ¥y Sc 073; y Sc 1/ sin Sc 409 // y Sc 073/ Y Sc 0429

amp 609 = 29 tan etlg — 1009 = 2 X 76359 — 1009 = 52-79

Bpos: M (ex9) Sc 60g / Y Sc 2:566; Yy Sc 2566 / tan Sc 23-65; 1009 —23-658 = 76359
(or simple: tanh Sc 4609 / sin Sc 52-79)

The scale for the basic function eX differs from the reverse scale for the function eX in that it increases from left to
right in the basic stage and in the higher stages, by the correctness of the number of places of decimals in the pre-
liminary stage and by the argument being expressed in natural numbers.

As the exponential and logarithmic functions are of equal importance, the Mathema Slide Rule is provided with both
the function eX..log Y and also the function log X..eY. As a result of this it is always possible to carry out the cal-
culations direct. Nevertheless, it must be borne in mind that the reading accuracy differs as between the basic and
inverse functions. As the exponent increases, the reading accuracy of the basic exponential function eX gets greater,
whilst that of the inverse exponential function eY decreases. The two degrees of reading accuracy reach a balance
with exponent 1 and the result e = 2718281828459 = 1/0-3678794412. The same applies to the reading accuracy in the
case of the logarithms.

The additive constunt for the different stages of the eX scale is a whole number multiple of log 10 = /M =
2-302585093 = 1/0-434294482.

n n log 10 n n log 10 n n log 10

1 2-302585093 4 9-210340372 7 16-118095651
2 4-605170186 5 11512925445 3 18-4204680744
3 6907755279 6 13-815510558 9 20-723265837

In order to bring the additive constant for several stages to the figure 2:2, the cursor of the Mathema Slide Rule is
provided with displaced marks for this purpose. The edge of the cursor on the narrow side is labelled accordingly.
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Examples:
In 11 —083% = In 0558 = — 0:584; B pos: ¥1—x* Sc 083 / Y Sc 0-558; Yy Sc 0558 / M % (eX) Sc — 0-584
In cos 409 = In 0-808 == —0-212; B pos: sin Sc 609 / Y Sc 0-808; Yy Sc 0808 / Mfg (ex) Sc —0-212
In sec 40 9 = ma;;fm = In 1-238 = 0-212; B pos: sin Sc 608 / '/y Sc 1-238; Y Sc 1-2383 / M fo (ex) Sc 0-212
in sinh 409 == In 067 = —0-4; B pos: sinh 409 / Y Sc 0:67; Yy Sc 047 / Mff) (ex) Sc — 04
tn ¥1042—1 = In 0285 = —1253; Bpos: x> —1 Sc 104 / Y Sc 0-285; !y Sc 0-285 / M (ex) Sc — 1:253
In tan 309 = In 051 = —0:674; B pos: tan Sc 309 / Y Sc 0-51; Yy Sc 051 / M 3 (ex) Sc — 0674
In tan 709 = In cot 309 == lné-;"—: 0-674; Bpos: tan Sc 309 / Yy Sc 1:96; Y Sc 196 / M 1’3(ex) Sc 0674

In cosh 409 = In 1-205 == 0-186; B pos: cosh Sc 409 / M Jj(ex) Sc 0185

e? = 739; M (ex) Sc 2/ Y Sc 0739 X 10

&2 = 01353; Bpos: M (ex) Sc 2 / Yy Sc 1353 X 1041

ed = e22+18 = 546; M 22 (ex) Sc 18 / Y Sc 0546 X 102

ed = e22—~18 = 00183; Bpos: M%3Z(ex) Sc 18 / t/y Sc 1-83 X 102

el = e88+22 = 59900; MS3(ex) Sc 18/ Y Sc 0599 X 107

el = e88—22 = 0.0000167; Bpos: M32 (ex) Sc 18 / Yy Sc 167 X 105

Q100 = 92103 +7:897 = 2.69 X 1043; MSS (ex) Sc 1:297 / Y Sc 0269 X 10

ar sinh 06 = In (06 + V1 + 06%) = In (06 + 1-168) = In 1:766 = 0569

Y Sc 06 / V1 + Y® Sc 11166; Y Sc (11166 + 0:6) / M {j (eX) Sc 0:569; (or y Sc 06 / sinh Sc 36259 = (-569)
ar tanh 06 = In V(1 + 06) = (1 — 06) = 0693

VX Sc 16/ VX Sc04//ySc1/YSc2; YSc2/MI(eX) Sc 0693 (or Y Sc 046 / tanh Sc 4419 = 0:693)
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The basic logarithmic functions * log X and the inverse exponential functions e Y

For basic logarithmic functions and inverse exponential functions the Mathema Slide Rule has two three-stage groups
of scales, Y = 1 log X for positive and negative logarithms, e*Y for direct and reciprocal powers of e.
With the logarthmic scales we get not only the natural logarithms on scale Y but also logarithms to any desired
base a. For this purpose, we place one terminal calibration of the slide opposite the figure a on the logarithmic scale,
as we must have: alog a = 1.
The logarithms to base a differ from the natural logarithms by a constant factor, the modulus

M = Ylog a.

a

Of particular importance is the modulus of the decadic or Brigg’s logarithms M = 0:4343,
Examples: log 2 = Ig 2 = 0301 Ig 10x = x.

Bringing a number a to the power of m with the aid of the slide rule can be explained as forming m log a on scale Y
and forming the antilog of this on scale eY according to the relationship
log am = m log a.

Instead of 1this, however, it is also possible to determine the antilog of m X @log a starting from scafe y. That this
is the rule is apparent from the fact thot in this case scale Y is not required at all and neither log a nor m log a is
read off.

For evolution, the above applies but with i/n = m.

The following cperctions are set out in such @ way that it is not necessary to insert the slide.

~1n X /a /g™ e~ Y —1n X \/a 1M e—Y
Yy m 1 'y y /n 1 t/y
y tim 1 y y n 1 y
In X c a™ e" In X a alm e’
28
Examples: Vi 0 1 cosh x Vv
105 = 2653, 10 In S 105 / y S 1//y Sc 2/ 01 InSc2653 g cothlx |1 cosechlx _sechix 1,
09520 = 0.3585; -101nSc 095 / ySc1 // ySc2 / -0-1 In Sc 0-3585 . Y
5 v 0 tanh{x 1 sinh{x__cosh{x v
}/0-5 = 0-8705; —01 In Sc 08:5/ ySc5// ySc1/ —InSc0-8705
234567 == 1067 X 1g 2345 = 1087 X 337 = 1022 + 058 = 3.8 X 1022 0 Vi-y2

y Sc 01 /01 In Sc 10 // 01 In Sc 2345/ y Sc 337;

67 KX 337 = 22:58; ySc1/01inSc10 // ySc0:58 / 01InSc38
In (246 X 10%) = In 246 - 8 In 10 = 551 + 18-42 = 2393
011InSc 246/ Y Sc551; 0-1InSc10/ySc1 // ySc8/ Y Sc 1842
¥ = (g75)2 = 18102 = 327 X 10%, Y Sc 75/ 01 In Sc 1810;
Y Sc 1810 / Vx Sc 327 X 10¢

esin409 = 1.8; sin Sc 409 / In Sc 18

(In 10)* = 3; 01 In Sc 10 / ¥x Sc 53

In (In10) = 0-835; 0-1 In Sc 10 / M 5 (ex) Sc 0-835

The two groups of the logarithmic scales show numbers
which are reciprocals of one another. The vatues given for
e > X>1e are more accurately read off than on scale y

and scale Yy and this is more so the nearer the numbers
are to 1.

Exaple: 1/1-01234 = 0-98781.

The Hyperbolic Functions and their inversions

The scales of the hyperbolic functions are given on the
back of the slide. As in the case of the other scales on the
slide and as the variables are again indicated by x and
y, the numbers refer to scale y. Passing between the hyper-
bolic scales and scale y is carried out on the one hand by
means of the hair lines on the windows and on the other
hand by the terminal calibration of scale Y.

sinh x

Hyperbolic functions.
The scales of this diagram are not logarithmic.
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gxamples: sinh 0-6 /2 = sinh 609 = 1.088; 01 sinh Sc é0¢ / y Sc 1-088
tanh 04 /2 = tanh 409 = 0-557; tanh Sc 409 / Y Sc 0-557
gsinh 0-2 = 12:659; y Sc 0-2 / sinh Sc 12-65¢

cosh 05 321 = cosh 509 = 1-325; .0-1 cosh Sc 509 / y Sc 1-325
E%Q ar sinh 2 = gsinh 2 = 9199; y Sc 2 / 0-1 sinh Sc 91-9¢
In cosh 509 = In 1-325 = 0-281; B pos: 01 cosh Sc 509 / M 1’3 (ex) Sc 0-281
As cosh x = me, we can find the values of cosh x for smail arguments with the aid ot the sinh basic stage
scale and the hyperbolic scale Y1 + Y2 more accurately than if we use the cosh scale.
In a similar way, sech x = y¥1— tanh®x is obtained with greater accuracy for small values of x if we use the circu-
lar scale V1—Ye,
Examples: cosh 109 = V1 + sinhzx = 1.0123; 108 = 0571; cursor left Y Sc 01 / cursor right ¥/1 -+ YZ Sc 10123
gcosh 10246 = 0223 = 14:29; cursor right ¥x2— 1 Sc 10246 / left cursor Y Sc 0142 = 14-29
sech 109 = Y1 —tanhtx = 0:9876; cursor left Y Sc, 01 / cursor right ¥1-—Y? Sc 09876
gsech 0975 = 02225 = 14-33; cursor right Y1 — x Sc 0975 / cursor feft Y Sc 0143
Accordingly, the relationship cosh x = !sech x could be used for the purpose of converting numbers in the vicinity
of 1 into reciprocal numbers. Nevertheless, in spite of greater simplicity, the use of the logarithmic scales * log X

gives more accurate results.
When calculating compound expressions with hyperbolic functions we start with setting the hyperbolic function.

Examples: sin 609 X sinh 609 = 0-881; D1 sinh Sc é0g / Y Sc 1 // sin Sc 609 / y Sc 0-881
sin 609 = sinh 609 = 0-743; sin Sc 609 / 01 sinh Sc 609 // y Sc 01 / Y Sc 0-743

For values x > 2244 the factor f;f can be neglected in the case of sinh and cosh. The following then applies:

X
sinh X == cosh x %.92,,__
sin 3309 X sinh 3309 = —79-4; sin 3309 = —sin 709
ot
M ’;ea(eXg) Sc50a/ySc2//ySc1/Y Sc8?2;, ySc892/Y Sc1//sinSc709/y Sc794
sin 2609 = sinh 2609 = —0-02725; sin 2609 = — sin é09

y Sc1/sinScé09//ySc2/YSc1618;, y Sc01/Y Sc 1618/ M lf; (ex9) Sc 120 / 1/y Sc 002725

The relaticns between the hyperbolic functions with single, double and half arguments and the algebraic functions to
be obtained from these are shown below in table form together with the corresponding relations between the trigo-
nometric functions.
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trigonametric.
hyperbolic
with single, double and half arguments

Relations between the functions

g o | I N ey — — p—
anh z VETT 2 | 1V T2=1 [/ f]—ﬂ?—]i—z— 1/ 1Tz V *1 T‘/z‘/TiZQ
cos < e — VT T 22 1, i )
cosh 4| ViTz z VT2 !/ Ukl A0k Lrz t 1+ ”12/_73_2?
fon ¢ T T oz Ay /ETFL | FmieviEa
tanh o 1Y 1/z2 41 VETZZF z 1+V1F 22 l// TF Z-Z H“-+fii

E1FV F 22 D e B
. i TR
sin s Van—p=y VETT 2 2z S
sinh 25 | 21z 22V E£1 % 2 T z VETF22 | VT2 <1
cos 2c =5 s 1F z2 — '
cosh2g 1+22 222 —1 T E22 Y1+ z2 z ] VT — z2
tan 2¢ 2z} F 22 2V +1F 22 2z S— ’
tonh 2¢ 1% 222 2221 1+ z2 V172251 VEV2FT i z

!

The top signs in the above formulae belong to the trigonometric functions and the bottom signs belong to the hyper-
bolic functions.

The given functions of z for single, double and half arguments are obtained if the value of the initial function for the
simple argument of the same column is equal to z. z can originate from a compound expression like a/b or Yarb.

The relation of a function with a single, double or half argument to the initial function in the same column with a
single argument is obtained by replacing z by the initial function. The expressions can be simplified in a very easy
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manner if stress Is only laid on the double or half argument as the initlal value, and not on certain initial functions of

these arguments,
An important example of the use of the above relationship is the gonlometric solution of quadratic equations.

x2 + 2ax — b2 = 0.

Il
I+

Set b/a = tan 2 ¢ and find x; b tan ¢, xo = b cot q.

x2 * 2ax -+ b? = 0, when b < a.
Set b/a = sin 2 ¢ and find x; = I b tan ¢, x2 = F b cot o

Examples: x* + 234x — 5670 = 0; a = 117; b = 752; x; = 22:1; X2 = — 2561
Y Sc752/y Sc117 // y Sc 1/ tan Sc 36-369; ¢ = 18-189
Y Sc1/y752// tan Sc 18189 /y Sc 221; y Sc 1/ Y Sc 752 // tan Sc 18189 / 1/y Sc 2561
x* + 234 + 5670 = 0; a = 117; b = 752; x; = —274; x; = — 2065
Y Sc752/y Sc 117 // 'y Sc 1/ sin Sc 4449, ¢ = 22:29
Yy Sc752/Y Sc1//tan Sc 2229 / y Sc 27-4; y Sc 1/ Y Sc 752 // tan Sc 2229 / Yy Sc 2065
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Differential quotients and indeterminate integrals of the elementary functions
of the “Mathema® Slide Rule

 (x) f (x) J1x) dx

mxm=1 xm xm+1/ (m+1) + C

X/ V1—x2 yi—=xt B5x Y1—x® 4 05 arcsin x + C

X/VFQ Vitx 05x y1+xt + 05 arcsinh x + C

%/ Y x2—1 Vx2—1 0,5% Vxt~—1 — 0,5 arccosh x + C

ex ex ex + C

1/x In x Xxlnx—x -+ C

cos X sin X —cos x + C

sin x cos X sin x + C

sec® x tg X —In cos x + C

cosec?x cotg x In sin x + C___

sin x/cos? x secx In ]/1 TsnX L Cc=intg @4+ x2) +C=arampx + C
1—sin X

cos x/sin? x cosec x —In ] ttcosx o ¢
1—cosX

11Yi—xt arcsin X x arcsin x + Y1—=x* + C

1/Y1—x2 arccos X x arccos X — V1—x* + C

1/ (1+x2) arctg X X arctg x — In Y1+x2 + C

1 (1+x2) arccotg x x arccotg x + In Vi+xz + C

cosh x sinh x cosh x + C

sinh x cosh x sinh x + C

sech? x tgh x In cosh x + C ,

cosech? x cotgh x In cosh x + C f ix)_ f (x) St x) dx B

sinh x/cosh? x sech x 2 arctg ex + C 1/yx*+1 arsinh x x arsinh x — yxt+4+1 + C

=amp x + &2 +C 1/yxt—1 arcoshx x arcoshx — yxt—1 + C
. . coshx +14 c 1/(1—x?) arctghx x arctghx + In y1—x* 4+ C
cosh x/sinh?x cosech x In ]/cosh x+1 1/(1—x?) arccotghx xarccotghx + In yx*—1 + C
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Power series of the real and complex elementary functions (z = x + iy)

-]
itz =3 (“m"’) 20 =1+ 212 — 28 + 7Y/16 — 2925,6 + 25/36,57143 — 28/48,76190 + .. lZ1< 1
m=0
*® —_—
vaEl =y 3 (—hm (0F) fam = vz {1k 122 — 182 & 1162 — VD562 £ 13657143 — . ) Z> 1
m =0
o0
ez = > vl =1+ z + 222 + 23/6 + 24/24 + z5/120 + 28720 + z*/5040 + z8/40320 + . . 121 < oo
n=20
n(1+z) = % (—1=1 z0/n = z — 22/2 + 283 — z4/4 + 25/5 — 786 + /T — 288 + 2°/9 — 2910 + .. 1z < 1
n=1
:;:h : _ % (+ Yrz2n+ (I + 1)1 = z F 236 + 25/120 + z7/5040 + /362880 + 211/39 916880 + . . ZI< o
n=20
Cos z ‘% (F nzz0/(2n)l = 1 + 792 + 2424 + 28720 + 2940320 + 719/3 628800 + 7'/ 479 001 600 + .. |z < oo
n=20
g oz % (F 1)n—1220(220—1)Ban 220-1/(20)1 = z * 293 + 27,5 + /1852941 + 294572581 % 2/112,82562 + . .
tgh z fz} < /2
n=1
€olg I (L q)n 220 Bonz2n-/(2n)l = 1/z F 2/3 — 13/45 T 23/472,5 — 27/AT25 F 29/46777,5 — 211/4620209 T . .
cotgh x = fzj < =
n=20
34
=+ —
sech =3 (+ 1N Ean z220/(2n)] = 1 * 2%/2 + z4/4,8 + 28/11,80328 - 28/29,11191 * z19/71,82756 + . . [z) < a2
sech z
n=20
=] —
cosec =5 (+ 1)n (22n—2) Banz20~1/(20)! = 1/z + z/6 + z3/51,42857 £ z5/487,74193 + 27/4762,20472 + . . Z1< =
cosech z
n=20
-]
arcsin £ .
arsinh z =2+ 2 (EN0@n—0)Hz20+Y@n 4+ 1) @n)! = z F 226 + 251353333 £ 27/22,4 + 29/32,91429 F 71/44,69841 + ..
< 1
n=1 =l
arcces z = x/2 — arcsin z
o
arcosh z = In2z — 2 (Zn—"1)1/ (n-22n+nl 220) = In 2z — /422 — 1/10,666672% — 1/19,22% — 1/29,25714z% — . . fz] > 1
n=1
o — — —_— p— —_
arcty z __ s (+ N 220+ (2n + 1) = z 4 z3/3 4+ z8/5 + 27 + 299 + 211 4 2913 4+ 715/15 . fzE< 1
arctgh z
n=20
arccotg z = arctg Yz @2n}lt = 2.4.6...2n
arccotgh z = arctgh /z (Zn—T) = 1.3.5... (2n—1)
arcsec £ = arccos Yz The limitation to the first terms of the power series
arsech z = arcosh !/z results in approximation formulae for the functions

arccosec x = arcsin Yz in the event of small or large arguments.

arcosech z = arsinh V/z
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Complex functions, conformal representations and plane orthogonal systems
of co-ordinates

z=x+ly X = jz] cos ¢

r=|z| = yxt +y* y =lzlsing

e =argz=adarctgy/xt2nm m = nombre entier

z=r(cosq+ ising) =re'?=r12*" (Euler) 20 = (cosne + isinng) =

ez = eX (cosy + isiny) M eing=n i2n¢/= (Moivre)

cos p = (eie + e-ie)/2 Inz=1Infz] + ig

sing = (eio — e -iv)/2i lnz=(Inz)m=0o

sin ix = isinh x sinh ix = |sinx

cos ix = cosh x cosh ix = cos X

tg ix = i tgh x tgh ix = itg x

cotg ix = —i cotgh x cotgh ix = —i cotg x

sinz = sin X coshy + sinhz = sinh x cos y +
+icos x sinhy +icoshxsiny

cosz = cos x cosh y + coshz = cosh x cosy +
—i sin x sinh y +1 sinh x sin y

_sin2x_- i sinh2y sinh2x_+ 1 siny

gz = co§2>€-+‘>_gésh2y tghz = cosh2x + cos2y
sin2x_— i sinh2y sinh2x ~— i sin2y

€019 7 =T o1k T coshiy cotgh 2 = Codhox  cosdy
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arcsin iz = iarsinhz = 1iln(z + yi+zd) arcsin z = ~—i arsinh iz = —i In (iz + yi—2)
arccos iz = —iarcash iz = i ln (z + yYi+2t) + /2 arccos z = —ij arcosh z = Xiln (z + i y1—z?)
arctg iz = iarctghz = iln V%’; arctg z == —i arctgh iz = —i In " %E
arccotg iz = —i arccotgh z == -——i In ’[/i: arccotg z = i arccotgh iz = —i In V%ﬁ
For an analytical function Z = f(z) = X (x, y}) + iY (%, y), the Cauchy-Riemann differential equation

BX_BY BX  BY

3x 5y 3y~ 38X
and the Laplace potential eguation

s 2 S 1Y 5 Y Y

T =0

5xt o 3y® ex* 3y

apply.

An analytical function Z = {(z) provides, for a curve of the z plane, a conformation representation in the Z plane,
and vice versa.

X (x, y) and Y (x, y) are harmonic functions.

The conformal representation of an orthogonal system of co-ordinates again results in an orthogenal system of

co-ordinates.

Parabolic co-ordinates
Z =12 z = VL

The Z plane has two Riemann surfaces with the ramification points Z = O and Z = oo; at these singular points,
'(Z) = O or = co.

X+ 0¥ = x2—y? + 2 ixy x + iy = VR + X2 + i \R—X)7Z_

Y; = 2y V¥Z + X, confocal parabolas fory = c. y1 = Y/2x, equilateral hyperbolas for Y = c.

Ys = 2x V)?‘*'T——X—,confoccl parabolas for x = c. Y2 = V;?:S(, equilateral hyperbolas for X = c.

Rele=r%e% ¢ , polar co-ordinates with duplicated arguments. rel = YR e"?, polar co-ordinates with “halved
argument”.

37



Polar co-ordinates

Z = ez z=1InZ

To the 4 parallel strips of the width /2 for y = O to y = 2x of the z plane correspond the 4 quadrants of the Z plane,
which has an infinite number of Riemann surfaces.

X + iY = excos y + i exsin y x +iy=InR+ig
Y; = X tan y, straight lines through the zero point fory =c. y; = arcsin YeX & 2xm
Yy = yex —X, circles about the zero point for x = c. y2 = arccos Xex £ 2am
Reiy = ex X eiy r (cosp + ising) = InR + iy
R = ex r = y(in R)? + ¥
=y @ = arccos ((In R)/r)
Transformation by reciprocal radii, inversion
Z =1z z = 1/Z
X + 1Y = x/r* — iy/s*
Y, = — 12y + y1/4y? — X2, circular clusters for y = ¢, contacting the real axis: dipol.
Ys = + yX/x — X2, circular clusters for x = c, contacting the imaginary; dipol.
Reiy = 1/rei ¢
R = 1/1, reflection with respect to circle of unit radius. p = —q, reflection with respect to the real axis.

Elliptical co-ordinates
Confocal ellipses and confocal hyperbolas with the focal points in Z = +1or Z = *i.

Z = sin z; X3/cosh®y + Y¥sinh?ly = 1; X¥sin*x — Y%¥cosix = 1.
Z = cos z; X%/cosh?y + Y?¥sinh?y = 1; X¥cos*x — Y?¥sin®x = 1.
Z = sinh z; —X?¥costy -+ Y¥sinty = 1; X3/sinh®x  + Y?Z/coshix = 1.
Z = cosh z; X2/costy — Y¥sinty = 1; X/cosh?x + Y?/sinh?x = 1.
The image of the co-ordinates for Z = sin z, cos z and cosh z agree with one another (focal points at Z = + 1),

while those of the co-ordinates for Z = sinh z are rotated by 1|_ in respect of the foregoing.

Superimposition of the Cartesian and the reciprocal network; dipole in straight flow

7=z 1Y1; iZ = iz—1iz z = 05 Z + /075 22 —1
X +iY = x + x't* + i (y—yr?)
={r+ 1rcosqg > i{r—1rsing
38

The Cartesian co-ordinates of the z plane provide in the Z plane the image of the flow about the circle of unit radius
(flow lines and equipotential lines), and likewise that of the flow in the said circle.

The unit circle of the z plane tends towards the siraight line from X = —2 to X = -+ 2 of the Z plane.

The other circles about the zero point of the z plane provide confocal ellipses in the Z plane with the focal points
in X = 2, while the straight lines through the zero point of the z plane become confocal hyperbolas in the Z plane
with the aforementioned focal points.

Circles through the points z = + 1 tend towards circular arcs of the Z plane.

Circles through the point z = —1 with the point z = 4 1 in its interior tend towards Zhukovsky airfoil profiles.

Source and negative source of the same thickness, bipolar co-ordinates

Z41
Z == tanh z/2 z =M (Z+1) —In(Z—1) = In e
1+ Z
Z = coth z/2 z=In{l+Z)—In{(1—2Z) = In T3
Ry = | cosec y |, circular clusters for y = ¢ about X = 0, Y = + cot y through the poles X = + 1.
Rs = | cosech x |, Apollonic circular clusters for x = ¢ about X = + coth x, Y = 0
14 iZ
Z = 1an z/2 7= —iln(1+4+iZ) +iln(1—iZ) = —iln Tz
i . . X . iZ +1
Z == cot z/2 z=—iIn@{Z—1) +iln@GZ+1) =iln 7o
Ri = | cosech y |, Apoilonic circular clusters for y == ¢ about x = 0, Y = % coth y.
R2 = | cosec x [, circular clusters for x = ¢ about X = + coty, Y = 0 through the poles Y = * 1

Two sources or negative sources of the same thickness
Z = Yer--1 z In (Z—1) + In (Z+1) = In (Z2—1)
X 051In (R"—2 R2cos2 4+ 1)
sin 2y
cos 2y — 1/R?
The parallels to the real oxis in the z plane become hyperbolas in the Z plane; they pass through the poles X = * 1,
their asympiotes through the zero point,
The parallels to the imaginary axis in the z plone become confocal Cassini curves in the Z plane with the focal points
in X = % 1; in particular, the imaginary axis of the z plane becomes the lemniscate of the Z plane, in accordance
with the equation R = y2cos2V.

([

i

y = arctan
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