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1. General introductions

In this instruction book information is given concerning the scales of the slide
rule, their range and purpose. Calculations are explained, together with the
interrelationships of the scales. To clarify principles involved, examples of use
are given for each scale, and guidance in arranging the most important factors
in complex formulae.

Expertise in slide rule manipulation comes with practice. Further exercises and
detailed explanations are to be found in the textbooks recommended:

Ellis, J. P.: The Theory and Operation of the Slide Rule

1.1 Manipulation of the slide rule

When using the slide rule it is best so to hold it that the light, falling on the cursor,
does not throw a shadow of the cursor line. The most precise movement of the
slide results from pressure and counter pressure. The projecting end of the slide
should be held by the index finger and thumb, close to the body of the rule.
Movement of the finger and simultaneous pressure against the rule body achieves
the desirable smooth pulling and pushing action. The other hand holds the body
of the rule by the upper body panel, so that the thumb can be used to press
against the end of the slide.

Fig. 1

Setting the cursor is possible, using either hand, but is more speedily and more
accurately accomplished by using the thumb and index finger of both hands.
By lightly pressing the bearing edge of the cursor, opposite the cursor spring,
against the edge of the rule body, tilting the cursor is avoided and the cursor
hairline is maintained perpendicular to the scales.

1.2 Personal identification tab

In the case of the slide rule, under the ARISTO scale of preferred numbers 1364,
will be found a transparent insert, which can be used to identify ownership of
the slide rule. The card contained can be removed, after bending the transparent
flap upwards and the name of the owner of the rule can then be written on the
card.

1.3  Treatment of the ARISTO slide rule

The slide rule, is a valuable calculating aid and deserves careful treatment. Scale
faces and cursor should be protected from dirt and scratches, so that reading
accuracy may not suffer.

It is advisable to give the rule an occasional treatment with the special cleansing
fluid, DEPAROL, followed by dry polishing. The use of chemical substances of
any description should be avoided as they may damage the scales,

Protect the slide rule from plastics erasers and their abrasive dusts, which can
cause damage fo the ARISTOPAL rule faces. Do not place the rule on hot surfaces
such as radiators, or expose it to full sunlight. Deformation is likely to occur at
temperatures above 140° F (60° C). Rules so damaged will not be replaced free
of charge.

14" The slide rule support stands
(Model 0968 and 0969 only) ‘

The supports for attachment to the ends of the ARISTO Studio 0968 or ARISTO-
StudioLog 0969 set the rule in an inclined position — either face can be upper-
most — raised above the desk top. This is of great convenience when, as for
example in tabulating, the rule is used lying on the desk. The raised position of
the rule is especially helpful when free movement of a magnifying cursor is
required.

T —T -z T T oy

Fig. 2

When mounting the slide rule supports the trigonometrical face of the ARISTO
Studio should be uppermost. The supports can then be pushed, endwise, on to
the welded and bars of the rule, with the recesses visible, and the lobes of the
supports engaged with the slots in the end bars.

15" Working diagrams used in the solution of examples

In what follows a method of representation will be used to show, in a form more
easily followed than in the more usual slide rule diagrams, the process of solution
and sequences of setting. The scales are represented by parallel lines, at the
ends of which the scale identifications are given. The undermentioned symbols
aid interpretation of the diagrams.

Initial setting

o
Each subsequent setting s
Final result » ® ,
Setting or reading an intermediate result I ®
Reversing the rule } NS
Arrowhead showing sequence and direction = J
of movement [ — 3
Cursor line shown by a perpendicular. © Fig. 3

3




THE ARISTO STUDIO SLIDE RULE 6968

> The ARISTO Studio is a universal Loglog slide rule for scientists, engineers and students,

2. Scale arrangement

Trigonometric side

ST Scale of tangents, sines and radian measure for angles of 0.55° to 6° X arc

Tt Scale of tangents for angles of 5.5° to 45° X tan Upper panel
T2 Scale of tangents for angles of 45° to 84.5° X tan of body

DF Fundamental scale folded by = X

CF Fundamental scale folded by X

CIF Scale of reciprocals of CF 1/7x .

Ci Scale of reciprocals of C 1/x On slide

C Fundamental scale x

D Fundamental scale x

P Pythagoras scale V1—xa Lower panel
S Scale of sines 5.5° to 90°; figured in red, X sin of body

counter-clockwise, between 0° and 84.5°, as scale of cosines X cos
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Fig. 4 Trigonometric side
LogLog side LLot Loglog scale, range: 0.99 — 0.9 e0.01x
LLoz 0.91 — 0.35 e01x Upper panel
LLo3 0.4 —10-3 P of body
A Scale of squares x2
B Scale of squares x?
L Mantissa scale g x
id
K Scale of cubes x3 On slide
C Fundamental scale x
D Fundamental scale x
LL3 Loglog scale, range: 2.5 — 105 ex Lower panel
LL2 11 —3.0 01 x of body

LL1 1.01 — 1.1 0.0t x
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o

LoglLog side

~ Fig. 5
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THE ARISTO STUDIOLOG SLIDE RULE 0969

[«
The trigonometrical face
ST  Scale of tangents, sines and radian measure for angles of 0.55° to 6° < arc
T1  Scale of tangents for angles of 5.5° to 45° 4 tan
T2  Scale of tangents for angles of 45° 1o 84.5° J tan Upper panel of body
DF  Fundamental scale, folded at = ax
CF  Fundamental scale, folded at = ax
CiF  Scale of reciprocals of CF 1/
S Scale of sines for angles of 5.5° to 90° & sin On slide
Cl  Scale of reciprocals of C 1/x
C Fundamental scale X
D Fundamental scale X ]
DI Scale of reciprocals of D 1/x
P Pythagaras scale V1 — %2 Lower panel of body
N Scale of sines of angles 5.5° to 90°. Figured in red, counter J sin
clockwise, between 0° and 84.5°, as scale of cosines X cos
3t
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The Loglog face LL0o0 Loglog scale, range 0.999 to 0.989 &-0-001x
LLo1  Loglog scale, range 0.99 1o 0.9 e0:01x
LLo2 Loglog scale, range 0.91 to 0,35 e 0% Upper panel of body
LLO3  Loglog scale, range 0.4 to 0.00001 e
' A Scale of squares x
8 Scale of squares x
Bl Scale of reciprocals of B 1/x2
3
K Sccle.of cubes X On slide
L Mantissa scale lg x
Cl Scale of reciprocals of C 1/x
C Fundamental scale X
D Fundamental scale X
LL3  Loglog scale, range 2.5 to 100000 e®
LL2  Loglog scale, range 1.1 10 3.0 e01x Lower panel of body
LL1  Loglog scale, range 1.01 to 1,11 0-01x
LL0  Loglog scale, range 1.001 to 1.011 o008
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f 3.. Reading the scales

To use the slide rule efficiently for rapid calculations is essentially a matter of
learning to read the scales quickly and correctly. The figures8 —11 show examples
referred to the most frequently used fundamental scales C and D. The principal
intervals, marked by long strokes, are figured from 1 to 10 (fig. 8). The end mark
10 is, on the trigonometrical face, repeated as 1, because this graduation can
be regarded as the beginning of another and identical scale.

ol s i ol S e
I : l----l _l‘- I T
Fia.s Tbomdnlnhrvds,yn TR, Q. A j §‘
In the range between figured graduahons 1 and 2 the scale resembles the gra-

duation of a millimeter scale, the difference consisting only in the reduction of
interval width, progressively from left to right and in the use, on the slide rule,

of the initial mark 1 in place of 0.

10077 109577 12207 L 1355 T Lo 1573 Tk L REg47 o
|:||||||uu|u|||||||||lllu||||u|||='1|||||n||u||||m||tu||m|||||||n|||u|||||ﬂ|u||m||m|| |
1 2;

Fig. 9 Roadmg in fh. ra.ngti fo 2 : e

The graduation marked 2 of a millimefer scale can be considered as indicating

2cm, 20 mm, 0.2 dm, 0.02 m and so on. In other words, the dimension, marked 2,

can be thought of in association with various powers of 10. Similarly, the figures

on the slide rule scales are independent of the position of the decimal point. It
is therefore advisable to read a series of figures without regard to the decimal
point, expressing them as simple numbers, e. g., 1 — 0 — 4 and not as one hundred
and four. This will avoid omitting figures. For practice, move the cursor slowly
to the right, from the value marked 1 and read at each graduation line the

series of numbers: 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112,

113, etc.

The cursor hairline is so thin, by comparison with the width of the intervals, that

the midpoint of a subdivision (between two graduations) can easily be located.

Indeed, smaller fractions of subdivisions can be distinguished by eye. With

practice, even one tenth of a subdivision can be estimated and thus the fourth

digit obtained.

For practice, move the cursor slowly still further to the right. Between the gradu-

ations 1310 and 1320 estimates can be made, e. g., as 1310, 1311, 1312, 1313,

1314, 1315, etc.

Between a numbered graduation and that immediately following it, especially

at the beginning of the scale, observe that a zero is to be read, e. g., 1000, 1001

1002, 1003 etc. (note 1007 in fig. 9)

s - TR RO o134 [ 2 or - pae A R o o s 5 --'-—-_~—_r— e
203 2155 12350700 9283 13020 UT3495' 379
| YY) il 111 [LLLE |l|ll Illlllllll IlllllllIll]llll|IIII|IIll|I]lllllll[Illllllllllllllllllllllqllllllllll

it L i J

Fig. 10 Roadlng in the range 2 10 4 ok g7 .' ¥ g -

Because the intervals fo the left of the figure 2 are already very narrow, in the
following range between figures 2 and 4, only every second interval is marked.
This yields a new graduation pattern, in which from mark fo mark the even
values are to be counted off: 200, 202, 204, 206, 208, 210, 212, 214, etc. The mid-
points of the intervals give the odd numbers: 201, 203, 205, 207, 209, 211, 213,
efc. Fig. 10 shows some examples.

S ——— PO —— —p e S

4075 47 " 5225 : eiw ) 695 75 sm 946 :
[ErpEg ||I'IlIlll|||l||II|||l|||||||||||I|I(I||ll|||||||||||||||||n|mmlml||||||||||||||||||p|nm||||n|||||||||
4 5 é 7. 8 9 10

i

Fig. 11 Reading in the range 4 to 10

10

In the range 4 to 10, the intervals are marked in subdivisions of 5 units and the
successive graduations are read as: 400, 405, 410, 415, 420, 425, 430 etc.

Intermediate values must be estimated. Midway between the marks 400 and 405
is the value 4025; a little to the left of this the value 402, a litile to the right 403.
In like fashion, at the midpoint of the next pair of subdivision marks is found the
value 4075. Fig. 11 shows a series of such points.

(lt.‘-f Reading the scales of pocket rules
"~ (model 868 and 869 only)

Because of the reduced base length, the scales of the pocket rule are divided
differently from those of the 10 in. slide rule, The three separate basic inferval
division patterns are shown in fig. 10.
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In the range 1 to 2, only the graduations 1, 1.5 and 2 are figured. The second
digit of a number can be counted off, using the longer graduations, as is shown
by the numbers in parenthesis — e. g. (12). The interspersed short graduations
give the (even numbered) third digit, e. g. 124. These third places are the even
numbers 0, 2, 4, 6, and 8. The odd numbers lie in the middle of the space between
two graduations, e. g. 103.

In the range 2 to 5 the second digit is again indicated by the longer of the gradu-
ations, e. g. (23), whilst the short intermediate lines indicate the third digit, in
units of 5, e. g. 215. All other values of the third place must be estimated.

In the range 5 to 10, only the first place is figured. The second digit, as with a
millimeter scale, is given by the short graduations, for example 52. The third
digit is estimated, as between two adjacent graduations, e. g. 583.

{5.\? Making approximations

It was explained, in chapter 3, that when using the slide rule, numbers are set
or read as a simple series of digits. The correct position of the decimal poin! is
determined by approximation. By this means, a check is at the same time imposed
on the order of magnitude of the slide rule result.

Rules for approximation:
Values strongly rounded off!
Examples: 343 =3 9.51 = 10 7.61 =8
When multiplying, round up one factor, round down the other!
Examples: 892 x 127 =10 x 120= 1200

2.19 x 9830 = 2 x 10000 = 20000



3. Reading the scales

To use the slide rule efficiently for rapid calculations is essentially a matter of
learning to read the scales quickly and correctly. The figures 8 —11 show examples
referred to the most frequently used fundamental scales C and D. The principal
intervals, marked by long strokes, are figured from 1 to 10 (fig. 8). The end mark
10 is, on the trigonometrical face, repeated as 1, because this graduation can
be regarded as the beginning of another and identical scale.

1 2 5773 & 5°6 789

L 1 1 | 11 L1 1 1

Fig. 8 The main intervals 3 5
In the range between figured graduations 1 and 2 the scale resembles the gra-
duation of a millimeter scale, the difference consisting only in the reduction of
interval width, progressively from left fo right and in the use, on the slide rule,
of the initial mark 1 in place of 0.

1007 1095 1220 1355 1573 RRTYY _
lll [RERREL |I| | |H|||||'|“|||“|'|||||I||||ll||||”|||||||||‘||||"|||||||||||||||||||||i||||||||||||"'
i 3 4 15 16 17 18 19 2

Fig. 9 Reudlng in.the range 1 10 2

The graduation marked 2 of a millimeter scale can be considered as indicating
2.cm, 20 mm, 0.2 dm, 0.02 m and so on. In other words, the dimension, marked 2,
can be thought of in association with various powers of 10. Similarly, the figures
on the slide rule scales are independent of the position of the decimal point. It
is therefore advisable to read a series of figures without regard to the decimal
point, expressing them as simple numbers, e. g., 1 — 0 — 4 and not asone hundred
and four. This will avoid omitting figures. For practice, move the cursor slowly
to the right, from the value marked 1 and read at each graduation line the
series of numbers: 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112,
113, etc.

The cursor hairline is so thin, by comparison with the width of the intervals, that
the midpoint of a subdivision (between two graduations) can easily be located.
Indeed, smaller fractions of subdivisions can be distinguished by eye. With
practice, even one tenth of a subdivision can be estimated and thus the fourth
digit obtained.

For practice, move the cursor slowly still further to the right. Between the gradu-
ations 1310 and 1320 estimates can be made, e. g., as 1310, 1311, 1312, 1313,
1314, 1315, etc.

Between a numbered graduation and that immediately following it, especially
ot the beginning of the scale, observe that a zero is to be read, e. g., 1000, 1001

1002, 1003, etc. (note 1007 in flg 9).
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Fig. 10 Reading in the range 210 4

Because the intervals to the left of the figure 2 are already very narrow, in the
following range between figures 2 and 4, only every second interval is marked.
This yields a new graduation pattern, in which from mark to mark the even
values are to be counted off: 200, 202, 204, 206, 208, 210, 212, 214, etc. The mid-
points of the intervals give the odd numbers: 201, 203, 205, 207, 209, 211, 213,
etc. Fig. 10 shows some examples.

4075 1'7 3225 61 695 ZS 801 946
eI I |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||p|||||||||||||||||||||u|||||||||
4 5 [ 7 8 9 10

Fig. 11 Reading in the range 4 to 10

10

In the range 4 to 10, the intervals are marked in subdivisions of 5 units and the
successive graduations are read as: 400, 405, 410, 415, 420, 425, 430 etc.

Intermediate values must be estimated. Midway between the marks 400 and 405
is the value 4025; a little to the left of this the value 402, a little to the right 403,
In like fashion, at the midpoint of the next pair of subdivision marks is found the
value 4075. Fig. 11 shows a series of such points.

‘4 Reading the scales of pocket rules
(mode! 868 and 869 only)
Because of the reduced base length, the scales of the pocket rule are divided

differently from those of the 10 in. slide rule. The three separate basic interval
division patterns are shown in fig. 10.

T an w2 o3 2 21 22 (23) (24)(75) S 6 7
I|.||||||.|||||||| NN 1 || lever o b
03 NS 124 25 2325 249 s2 583 458
range 110 2 range 2to 5 range 5 to 10

Fig. 12

In the range 1 to 2, only the graduations 1, 1.5 and 2 are figured. The second
digit of a number can be counted off, using the longer graduations, as is shown
by the numbers in parenthesis — e. g. (12). The interspersed short graduations
give the (even numbered) third digit, e. g. 124. These third places are the even
numbers 0, 2, 4, 6, and 8. The odd numbers lie in the middle of the space between
two graduations, e. g. 103.

In the range 2 to 5 the second digit is again indicated by the longer of the gradu-
ations, e. g. (23), whilst the short intermediate lines indicate the third digit, in
units of 5, e. g. 215. All other values of the third place must be estimated.

In the range 5 to 10, only the first place is figured. The second digit, as with a
millimeter scale, is given by the short graduations, for example 52. The third
digit is estimated, as between two adjacent graduations, e. g. 583.

S Making approximations

It was explained, in chapter 3, that when using the slide rule, numbers are set
or read as a simple series of digits. The correct position of the decimal point is
determined by approximation. By this means, a check is at the same time imposed
on the order of magnitude of the slide rule result.

Rules for approximation:

Values strongly rounded off!
Examples: 343 =3 9.51 = 10 7.61 = 8

When multiplying, round up one factor, round down the other!

Examples: 892 x 127 =10 x 120= 1200
219 x 9830 = 2 x 10000 = 20000

11



When dividing, simplify!
Numerator and denominufor are rounded off in the same direction.

725 7.25 7
Examples: ———5—?9-..?_14

640 x 15.3 60 x 20
51 x 08 5x 1
Very large or very small numbers are simplified by separation of powers of 10.

Examples: 73215 = 7 x 10% 0.0078 =~ 8 x 103
89 = 9 x 101 0706 =7 x 10-1

= 240

Separation of powers of 10, when multiplying or dividing with very large num-
bers, gives a clearer appreciation of quantity.

Examples: 0.07325 x 0.000513 =~ 8 x 10-2x 5 x 10~ = 40 x 10-6 = 4 x 105

2950 3 x 103

L 22 7 05 x 106
0.00598 6 x 10-3

6 The slide rule principle

Calculations are carried through by the mechanical addition or subtraction of
scale lengths. The process can be very simply explained by considering two
abutting millimeter scales, sliding one upon the other. Fig. 13 shows the example
2 4+ 3 = 5. Ifthe initial mark 0 of the upper scale is moved over the value 2 of the
lower scale, then immediately under 3 of the upper scale is found the sum 5
on the lower scale. In addition the sum 2 4+ 1 = 3 or 20 4 15 = 35 can be read
from fig. 13, if the millimeters are counted off.

é‘,iﬁ'?be B3 :
mllunllmluulm|lm||
n||||||||m|uu e

E ) 5

Fig. 13 Graphic addition by use of two ordinary scales

s

The subtraction 5 — 3 = 2 can also be read from fig. 13, by reversing the process
described above. From the length 0 — 5 on the lower scale the length 0 — 3 on
the upper scale is subtracted by setting the values 3 and 5 of the upper and fower
scales, respectively, the one over the other and reading the result 2 from the
lower scale under the initial mark 0 of the upper scale.

In the slide rule the graduations are disposed upon a rigid rule body and on a
slide moving therein. The scales of the slide rule are, however, logarithmically
divided and so the addition of iwo scale lengths performs a multiplication and a
subtraction of two lengths carries out a division.

12

,1_.‘,“ Multiplication
{Two scale lengths are added.)

The initial value 1, the left hand index
of scale C of the slide, is brought over
the value 18 on scale D. By moving the
cursor to the value 13 on scale C we
add the length 13 to the length 18. The
product 234 can be read under the
cursor hairlineon scale D. The position 1 / :
of the decimal point can be located by Fﬁ" " 18 x 13 IS, 234

:
an approximation, (20 x 10 = 200). 10285 = 513 { -,1
n 18)( 7.8 .-1‘0.‘ e’ ULl S
To read the product of 18 x 7.8, the slide would have to be traversed, that is,
the terminal index 10 of scale C would be brought over the factor 18 on D.
With the ARISTO Studio or the ARISTO Studiolog, this additional slide sefling can
be avoided, if the upper pair of scales CF/DF is used for the multiplication.
Scales CF and DF make this simplification possible, because they are a repetition
of the fundamenta! scales C and D, with the difference that the initial index 1,
is placed approximately in the middle of the rule. It is often advantageous to
make the first setting with the index of the CF scale placed opposite the multiplier
on DF, because in this case, there is no need to decide whether to start with the
right or the left index. Furthermore, in all settings made with the upper pair of
scales no more than half a slide length will ever project beyond the body scales.
It will be noted that, when for example index mark 1 of the scale C of the lower
pair is set to 18 on D, the setting of 1 on CF (upper scale pair) is simultaneously
beneath 18 on scale DF. As a product 3.98 x 2.38 will be calculated by setting
1 on scale CF under 3.98 on DF. The cursor hairline is then moved over 2.38 on
scale CF and the result 9.47 read on scale DF.

(8.} Division
. (Subtraction of one scale length from another. This is the reverse of
multiplication.)

T

p
The cursor hairline is brought over the I 8F A nx
value 2620 on scale D and the value - e :']:
17.7 on scale C moved under the cur- FC'F ) - nx
sor line. The two values are then in (€l g
juxtaposition. The quotient 148 is read _IS 5, 1 12.7
on D under the left hand index of C of | ™ £ 2148 gk gﬁ-
the slide. In other cases, the quotient "Fln 15
may be read under the right hand y
index of the slide.

Naturally, over 1 on CF the quotient can be read on DF, because the divi-
sion 2620 — 17.7 has also been set on this scale pair. In division withscales CF/DF,
the factors are in the same relative position as written in a vulgar fraction.
The slide sefling is identical with that for the multiplication 148 x 17.7 = 2620.
The difference between multiplication and division consists only in the order of
sefting and reading. After setting up the division, the quotient will in any case be
read on the body scale, under the left hand or right hand index; slide traversing
will not be necessary. This characteristic feature will be used in the following
chapters.

--wr-m-* MU Kt i £

X fm

‘ T 2620 17,7 = 148
Rovug!-n_ly: 3000 520 - 1_.'_t° 1

/9.3 The folded scales CF and DF

In graduation pattern, scales CF and DF are identical with the fundamental
scales C and D, but are laterally displaced, with respect fo the fundamental

13



scales, by the scale length corresponding to the value of -z = 3.142. The value,
figured 1, of these folded scales lies near the middle of the rule, producing an
overlapping of the fundamental scales by half the rule length. The two pairs of
scales, C/D and CF/DF, constitute a working assembly achieving advantages
in multiplication, division, tabulation and proportion problems.

Index 1 of scale CF stands opposite, on DF, the same value as is matched with
index 1 or 10 of scale C on D. Any of the multiplications discussed earlier can
be begun on the scale pair CF/DF, with advantage, since the initial sefting can
always be chosen at once. It is not then necessary to decide whether the initial
or final scale index should be used. If a division is set with the upper scale pair,
the numerator and denominator are in their customary relative position, with
the parting line between the scales corresponding to the division line in the
fraction as written.

If the result of a problem cannot be read from one scale pair, it is always possible
to find it from the other pair and slide traversing is avoided. The yellow strips
on the slide are a reminder that factors taken on the moveable slide scales C or
CF yield results to be read on D under C or on DF over CF.

9.4  Tabulation without slide traversing
y = 29x

x | 17 | 345] 50 | 10
y | 49.3 ] 100 | 145 | 290

For x = 5 the upper pair of scales CF
and DF provides the answer without
resetting the slide.

28.2
x ] 7.43 | 292 | 1.567

_ox 1

Y =18z = 182 X *
x | 317 | 1124
y | o172 | 616

9.2 Direct reading of multiplications and divisions involving

A further advantage issues from the displacement of scales CF and DF by the
value 7t = 3.142. By switching from D to DF or from C to CF, multiplication by
is performed automatically. Conversely, a division by = is accomplished by
changing from DF to D or CF to C. If, for example, a diameter d is set with the
cursor on D, the circumference -t d can be read at once on DF. Similarly, the
angular velocity w = 2z f is found on DF when 21 is set on D.

14

The possibility of taking the final
reading by switching scales should

T TR T T e
l * . ¥
always be considered when dealing i

o

with problems involving the factor =,
Fig. 19 shows a range of results incor-
porating 71, demonstrating the possi-
bilities of a single cursor setting.

Calculations  with reciprocals see ?
chapter 11. [\

b PR

Fig. 19 Calculuﬂom wIIh L
f"lo.\ Combined multiplication and division
Ay

In solving expressions of the form F’"’"’“‘W

ax bthe rule to apply is: 8; : x ‘i

First divide, then multiply. EIE'F SESTCORPO A R Ix ?
| B

The intermediate result of the division ¢ i 132 22 : A

of 345 by 132 in fig. 20 need not be | 8 FI 3 7% x|

read. The slide rule scales are position- | et ShpriNe

ed ready for the final multiplication. | . "R

The cursor is moved over the value 22 | - 29 345 oughly. i

on scale C and the result read on scale | 35 x 22.m 575 22 o5 X0 =60

D, viz. 57.7 £ 19z

345 x 22
If, in this example m—x—ws = 2.95, the further factor 19.5 is introduced in the

denominator, the solution obtained in fig. 20 is divided by moving the value
19.5 on scale C under the cursor hairline, thus dividing 57.5 by 19.5. Should
there be, in examples of this type, yet more factors in numerator and denomi-
nator, simply divide and multiply alternately. The rhythmical alternation between
slide and cursor positioning leads to smooth flowing calculation with minimal
setting.

In such problems, it can happen that the slide, following a division, projects too
far out of the rule body to permit a setting. To perform multiplication, the slide
must be traversed. By careful choice of setting for division, between scales C/D
or CF/DF, the necessity for slide traversing can often be avoided.

fili‘l:’ Scales of reciprocals Cl and CIF

Scale Cl is divided exactly as the fundamental scales C and D, but the intervals
progress in the opposite direction, i. e., from right to left. To obviate errors the
figuring of the graduations is in red. If the cursor is set to any value x on scale C,
the reciprocal 1/x can be read from Cl, as indicated by the scale identification
symbol at the right hand end of the scale.

Over 5 on Cis 1/5 = 0.2 on Cl. Of more importance, however, is the fact that
the reciprocal scale can be used in the reverse direction. By changing from Ci
to C we find, e. g. under 4 on Cl the value 1/4 = 0.25 on C.

The occasional use of scale C! to find reciprocals would not justify its provision;
its real value lies in the fact that it can be used to avoid many settings in complex
examples.

4
< can be written as 4 x 1? and 4 X 5 as its equivalent — 1/5

15



Whilst these expressions are perhaps unusual, they offer the advantage, for slide
rule working, of converting a division info a multiplication or, conversely, a
multiplication to a division. This advantage will best be displayed by a “game”
with simple numbers.

1. With the cursor set to 6 on D, bring
2 on C under the hairline. We then
have the usual setting for the division
6 = 2 (fig. 21). If, however, the cursor
is left in place and by a slide movement
2 on Cl is brought under the hairline,
we have the multiplication 6 X 2 and
read the product 12, as for a division,
under the index of the slide — (fig. 22).
Actually, we have found the quotient
of 6 = 0.5, because with bringing 2
on Cl, simultaneously the reciprocal
0.5 on C was set under the hairline.

2. Now, letting the index 1 of C
remain over 12 on D, move the cursor
to 4 on C, establishing the normal sett-
ing for the multiplication 12 x 4 = 48
(fig. 23). By moving the cursor to 4
on Cl, however, we can read the
quotient of 12 = 4 on D (fig. 24). In
other words, because under 4 on Cl
sfands its reciprocal 1/4 = 0.25 on C,
we actually calculate 12 x 0.25 = 3.

There are thus two setting possibilities
in multiplication and division and the
experienced operator will chose the
best, in the solution of a complex
example by alternate division and
multiplication.

The stated relationship between scales C and Cl holds similarly between scales
CF and CIF. To show that this is so, the “number game’ can usefully be replayed
with the scale group CF/DF/CIF.

Anyone who thoroughly studies the foregoing will at once recognise that scale
CIF is the logical complement of the scale system. Whoever properly exploits

the advantages of the folded scales will use scale CIF as often as scale Cl. *
Expressions of the forma x b X c or e

a |
bxcxd tgF'
alternate multiplication and division, . CIF-
C|

etc. will be solved by

as shown in chapter 10 on combined t
multiplication and division. In the
course of the calculation with scales C, 2
f
"

D and Cli switching to the scale group '
CF, DF and CIF will avoid slide tra- ""'9-2-" Sonahly s g§‘1'-95: }054'1
versing in multiplication.

In the example of fig. 25, the factors 185 on scale D and 6 on scale Cl are set in

opposition, as for a division. Multiplication by 0.95 is then carried out with the
upper scale CF and the result 1054 read on DF over 0.95 on CF.
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5;11.;:' Scale of reciprocals DI

The reciprocal scale DI offers advantages to the experienced operator, who
may on occasion exchange the functions of body dnd slide scales, for example
when dealing with proportions.

@ Proportions

a c e
Proportions of the form =97
with the slide rule because, after setting one ratio, all other equal ratios can be
found by moving the cursor. The parting line between body- and slide scales
can be regarded as the line in a common fraction, as written, Proportions should

preferably be expressed in this form.

=... are particularly simple to calculate

Example: 9.51b of a given material cost § 6.3. What will be the cost of 8.4 Ib?

6.30
The solution by “rule of three" follows from 535 X 8.4 =5.57
The calculation can be more conveniently made if the ratio of weight and price
is set up as a proportion. If the given
weight on DF is brought over the

Ay T— w——-—-y—*—r—p-'-"j

corresponding price $6.30 on CF, all EF . 10, nx |
equivalent weight/price ratios will be 7 &3 703 I {
shown on scales DF/CF and D/C. On Ja Tx
scales DF and D are all weights, in |C' 1
accordance with the initial setting and 8 1.86 2~:2 bse x

on scales CF and C are the correspond- [ i 1. 3 )

ing prices. Opposite the weight 8.4 Ib
is found the price $5.57. Other
weight/price relationships are shown in fig. 26.

10.6 1b cost $ 7.03 (scales CF/DF)
3.8 Ib cost § 2.52 (scales C/D)
2.8 1b cost $ 1.86 (scales C/D)

1 Ibcost $0.66 (scales C/D)

ang 26 Proportions

The proportion can be extended at will:
Ib 95 8.4 106 338 2.8 1

$ 63 557 703 252 186 0.66

Calculation by proportions proceeds independently of the earlier mentioned
rule. It is of no consequence, when and how the weight/price ratio is set up,
the only difference arising is that weights are looked for on the scale on which
the first weight was set and the corresponding prices on the adjacent scale.
In the example above 6.3 could have been set on scale DF and 9.5 on CF. The
price 8.4 would then be found on CF and the required proportion read on DF,
as 5.57.

This principle of direct proportion, a: b = c:d applies with equal force to
indirect proportion, which leads to the identity a X b = ¢ x d, to be solved
with the aid of the reciprocal scales (see section 11). Finally, the principle can
be seen applicable to the ““mixed"’ proportionsa x b =c:danda:b =c x d.

{‘a The scales A, B and K
If the cursor line is brought over any value x on scale C, the value x2 can be

found on scale B (the scale of squares) or x3 on scale K. Conversely, the square
root or the cube root can be obtained.
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a) 2=14 23 =
b) 32,72 = 3,272 x 102 = 1070
32,73 = 3,278 x 103 = 35000

2 3 __
99 =3 Yo7 =3
2
d) 51 =714

The position of the decimal point is best found by approximation. In calculating
powers and roofs it is of advantage fo work in powers of ten, to obtain numbers
in which the position of the decimal point is easily seen. To this end, the scale of
squares is figured 1 to 100 and the cube scale 1 fo 1000. The range in which the
cursor is to be set follows from the figuring of the scale.

Examples:
v 1/3200 = 1/32 x 100 =10 x /32 =10 x 5.66 = 56.6
1

1« V1813 5.66 = 0.566
—i—o—Xl R —ﬁx . = V.

3—— 3/1813

134 Calculation with the scales A and B

Scales A and B, like the fundamental scales C and D, are identically divided,
with the difference that they consist of two scale segments, each half the length
of the fundamental scales C and D. The left hand segment is figured 1 to 10 and
the right, 10 to 100. All examples so far discussed can be solved with the scales
A and B, by methods described for the fundamental scales. The reading will be
somewhat less, because the graduations are disposed over only half the length
of the rule.

The juxtaposition of the scales offers the advantage that the slide resefting is
avoided, on basic principles.

In many cases it is convenient, if a problem begins with a squared factor, to
continue the calculation on the scales of squares.

132 Scale of reciprocals Bl

(869 and 0969 only)
Scale Bl is the reciprocal scale of B. The scale Bl offers advantages to the ex-
perienced operator, who may use on occasion use the scales of squares as the
fundamental scales and their reciprocals.

‘144, The Pythagoras scale P

In a right triangle, with hypotenuse 1,
the Pythagoras relationship with the
other two sides holds.

y =V1—x?

For any setting of x on the fundamental
scale D we find the value of y on scale

P and, conversely, x = /1 —y2 on D w==r B~ " b o
ify is set on P. In the example of fig. 29 ¥ = o3 Y e
it is clear that 0.6 could equally wellbe = = ° R 7
set on D or on P. In either case the | R i I-M : Ig m'!
required value 0.8 is found on the | 9w ¥ J |
corresponding adjacent scale. i o
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The choice of initial setting should be made with due regard to maximum
accuracy of reading. In the example o 1 L A
V1 — 0152 = 0.9887 the factor 0.15 [HG /- A

will be set on D.

Example in electrical engineering:
apparent load 2 1.0
effective load 2 0.85

watiless load 2 }/1 — 0.852 = 0.527

This method of solution is suitable, however, only when the hypothenuse is 1, 10
or 100 and especially when converting sin «— cos, using the relationship
sin2 ¢ 4 cos2 @ = 1. With reference ;

also to the scale DI at the ARISTO
StudioLog, the relationships shown in
fig. 31 are available. More generally,
right triangles are solved with greater
elegance by trigonometrical methods

(see chap. 18). | Fig. 31

To achieve greater accuracy in calculations with the scales of squares, re-
arrangement of the data is useful. For example:

10.91 = V1 = 0.09 = 0.9540
The factor 0.09 is taken on the left hand portion of scale A. On D is then found
1/0.09 = 0.3 and the value of l/1 — 0.32 = 0.9540 is seen on P. Greater accuracy

is obtained, in this way, for roots greater than about V0.65 and is always
convenient when the radicand is close to 0.01, 1,100, etc.

515} Trigonometrical functions

All angle functions are referred to the fundamental scale D and the angular
scales, in the 360° system, are decimally divided.

If an angle is set with the cursor on scales S, T1 or T2, the corresponding function
value can be found under the cursor line on scale D. Conversely, for a function
value set on scale D, the corresponding angle can be read on scale S, T1 or T2.

The figuring of the decimally divided scales S, T1 and T2 applies uniquely to the
inscribed angle values.

The slide rule gives the function value for angles in the first quadrant only. The
relationships for any angle, with those of an angle in the first quadrant, are
tabulated below.

+ x 90° + « 180° + « 270° + «
sin + sina + cosa F sina — cosa
cos + cosa F sina — cosa + sina
tan + tana F cota + tana F cota
cot + cota F tana + cota F tana

‘45.4i The sine scale$

The scale of sine S is figured between 5.5° and 90° in black and also in red from
right to left, for cosines between 0° and 84.5°. All sines and cosines read on D
are prefixed with 0 before the decimal point.
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Sines of angles & > 45° are read with enhanced accuracy on the red figured

scale P, using the identity sin o = 1/1 — cos2 . To set the angle, the red figures
of scale S are used, hence the colour rule for sine functions: set and read sine
functions in like colours.

For cosines of angles a« < 45° an
analogous colour rule follows from
cosa = J/1 —sin2 «. For every setting
on scale S read in the contrasting
colour the function value on scale D
or P.

Examples:

sin 26° = 0.438

sin 82° = V1 — cos2 82°
= 0.9903

arcsin 0.54 = 32.7°

cos 75° =0.2588

cos 7° = 1/1 — sin27° o P s
= 0.99255 | < x ST L

arc cos 0.9852 = 9.87° |Fig. 33 Cosine 77/ 2 Bl J

152 The sine scale on the slide
(869 and 0969 only)

With the ARISTO Studiol.og. a scale of sines is available on both rule body and
the slide, providing the facility of a fixed ore moveable scale, either of which
may be used according to convenience when dealing with a particular problem.
In multiplication or division of multi-term functions, e. g., in spherical trigono-
metry, both scales are advantageous. The slide scale of sines is helpful, too, in

. . a b . . -
problems involving —— and and in optics, when refraction formulae such
sina cos
n sin i
as — = —— must be used.
n
Examples:

sin 44.3° x sin 16.7°
sin 14.6°

1. cos p =

@ = 37.2°

2. Calcylate the trigonometrical alti-
tude h if the length of the basic is
¢ = 18.6 cm and the angles of ele- |
vation are « = 28° and f = 25°
(fig. 35).

_cxsinasing
h_m(flg.iﬁ)

20

For slide rule calculation the formula
is written: :

. 1
1 sm(a-—ﬂ)x?
" sina X sin 8
1
i 0 __ 9EO —
1 sin (28 25°) x 188
h 7 sin 28° X sin 25°

h=70.5m (fig. 36)

With the aid of the cursor bring 3°
in ST over 28° in S. Then move the
cursor over 18.6 in Cl. Without
moving the cursor the slide is dis-
played, that 25° in S on the slide gets
under the cursor. Read the result
h =70.5 m in C over the end of D.

f15.3? The tangent scales T1 and T2

The tangent scaleisin two parts. T1 covers the range 5.7° to 45° and T2 45° to 84.3°,
For any angle set on the twice, tangents scales the function values of the twice
tangents are read on D. Angles set on T1 have function values between 0.1 and 1.0,
whilst angles set on T2 have function values between 1 and 10.

The cotangent is the reciprocal of the
tangent and consequently the relation-

ship cot @ = —— is used. For an
P ® tan Y

angle set on T1 or T2 the function
values of the cotangent can be read
on the scale Cl. At the ARISTO Studio-
Log the function value of the cotangent
can be read on the scale of recipro-
cals DI. Angles set on T1 have function
values of cotangents between 1 and
10, whilst angles set on T2 have func-
tion values between 0.1 and 1.

Examples:

tan 14° = 0.2493
tan 23.6° = 0.437
tan 41.1° = 0.872
tan 51.2° = 1.244
tan 73.4° = 3.35
tan 80° = 5.67

arc tan 1.75 = 60.25°
arctan 2.0 = 63.43°

E Fig. 38 Cotangent
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cot 9° = 6.31
cot 23.6° = 2.289
cot 41.1° = 1.146
cot 51.2° = 0.804
cot 73.4° = 0.298
cot 77° = 0.2309

arc cot 2.0 = 26.57°
arc cot 1.75 = 29.74°

(16} The ST scale

This scale is an extension of scales S and T for angles having function values
- between 0.01 and 0.1, read on scale D. lis construction satisfies also the require-
ments for converting between radian and circular measure, again with refe-
rence fo scafe D.

161 Small angles — large angles

If sin = and tan x for & < 5.5° or cos « and cot « for « > 84.5° are to be found,
use the relationship:

sin o = tan « = cos (90° — «) = cot (90° — a) = 1—;6-a° = 0.01745 «

Scale ST is figured between 0.55° and 6° but is subdivided in radian measure.
This makes possible accurate reading on scale D in radians for sine and tangent
functions of small angles. The red figuring of scale ST, from right to left, between
84° and 89.45° enables the scale of small angles to be used for the cosines and
cotangents of large angles. )

The agreement in value between sin a, tan «, and arc« is very good up fo 4°;
for example sin 4° = 0.0698, tan 4° = 0.0699, and arc 4° = 0.0698. For larger
angles between 4° and 6° more accurate values can be obtained from the
relationship:

. sin 6° tan 6°
sina = a X or tana =a X
6 6
Examples: FAFWu gk
i sin 6° £ 8;..__ :
sin 4.7° = 4.7° x = 0.0819 E T [ oo
6 RS m T ros
° 7 ; T
sin 5.3 = 5.3 x 2" _ 00924 R
o .. 2 3 |33
tan 4.7° = 4.7° x '026 = 0.0822 E : ot o T -
tan 5.3° = 5.3° x fan 6 = 0.0928 | P L g - g
6 i Fig. 40, sin 4.7° = 0.0819 ",

To work the foregoing examples, the dala are re-arranged as follows:

sin 6° \ tan 6°
ana =

—x 6 —x 6
a a

sina =

22

With the aid of the cursor sin 6° on scale S or tan 6° on scale T are brought
under the value of the angle « on scale CI. The cursor is then moved over 6 on
scale CIF and the result read on scale DF.

Values cos« for a < 5.7° and sina for a > 84.3° can only be read rather
inaccurately from the rule. In such cases, the first terms of an expansion provide
a helpful approximation.

o2
coso =1 — 5 (in radians) .

S om0
0.02622

= 0.999657 (fig. 41)

Example: cos1.5° =1

To calculate the second term of the expansion the angle 1.5 is set on scale ST
with the cursor. On scale D is then found the angle in radian measure and the
square of this value 0.000686 is seen on scale A. To divide by 2, bring 20on B
under the hairline and read the result 0.000343 on scale A. Finally, the subtrac-
tion 1 — 0.000343 gives the result 0.999657.

2
sin 86.5° = cos 3.5° =1 — 0.0611 = 0.99813

—,
P . .
162) Conversion circular «— radian measure

Conversion from circular to radian measure follows a cursor seiting and transfer
from scale ST 1o scale D, because ST is a repefition of scale D displaced by the

T . .
factor 180 Conversely, radian measure can be converted to circular measure.

This facility applies not only for angles marked on ST, but for all angles, because
the scale is decimally divided and therefore 1 can be read as 0.1°, 10° and so
forth, with an appropriate shift in the position of the decimal point in the radian

measure (see fig. 42). The figure 1 of scale ST corresponds to the value % on D.

Examples: ol e, by LAy |
i’ 8T 1° Bwo g

a) 0.1° = 0.001745 rad [ -
kL s - «<I tan ]
b) 10° = 0.01745 rad E T2 <t
& mo
¢) 0.5° = 0.008725 rad F & #
d) 5° =0.08725 rad Lo - 1
x |
x i

.8 g geeE
Should the smalil angle be given in

minutes or seconds of arc, it can be ' Fig. 42
transformed into a decimal fraction

o

1
of a degree: 1" = %0 and 1”7 = ° (see also chap. 16.3 and 21.1).

1
3600
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By setting 6 or 36 of scale CF under 1° on scale ST a useful tabulation is produced,
for conversions of this type.

( The marks ¢’ and p”

These gauge marks simplify conversion when the angle is given in minutes or
seconds of arc. They indicate the factors:

180
o = — X 60 = 3438 for minutes
0
= % x 60 x 60 = 206265 for seconds
) N « o
Hence, converting by division: arca = — = —
o 0

“For example:

22
arc 22" = — = 0.00640 rad (fig. 43)

<

400’
arc 400’ = g = 0.1163 rad
)

arc 17" = i = 0.0000824 rad
(J

arc 380" = :&- = 0.001843 rad
o

These marks are of great use when finding small angles or lengths of arc for
given radii:

a= b X o when the angle is to be
r found.
o Xr

b= when the length of arc is

¢ required.

Examples:

o = -—5 X o' = 45.8
48” X 67

= 0.0156

(l;} ARISTO Studijo, 4009 system

The trigonometrical scales S, T1, T2 and ST are in the ARISTO Studio 0968/4009
divided in the 4009 system. Calculations with these scales follow the routines
described in chap. 15 to 16.3. The previous examples and the relationships
quoted must however be modified to conform with a right angle of 1009. When
finding cofunctions note:

cos @ = sin (1009 — &)

cot & !
= tan (1009 — &)

24

In the 4009 system the examples of chap. 15.1 fo 16.3 appear as:

{74
sin269 =0397
sin 829 =1 — cos2829
= 0.9063
arc sin 0.54 = 36.39
cos 759 =0383
cos 79 = ]/1 — sin279
= 0.99396
arc cos 0.9852 = 10.979
-
172
e
tan 149 = 0.2235
tan 809 = 3.078
tan 859 = 4.17
arctan 1.75 = 66.959 Fig
t779 = 0.378 - ; S
arc :::Zt 20 = 87.448 [Fig. 46 T"""'“ °"" “'“"ﬂ'"! biicus
‘1.73 sin o = fan @ = cos (1009 — &) = cot (1009 — &) = 99 = 0.01571

2009
For the sines of large angles and the cosines of small angles use the first terms
of the series expansion.

0.031 422
2

sin 959 =cos59 =1 —

— 1 — 0.000494 = 0.999506 (fig. 47)

0.07862
2
174 In the ARISTO Studio 0968/4009 scale ST is displaced by the factor

Example: cos 29 =1 —

=1 — 0.00308 = 0.99692

2;;;0-, with respect to the fundamental scale. The value 1 on this scale is the
20

setfing point for -

a) 0.19 = 0.001571 rad c) 0.59 = 0.007854 rad

b) 109 = 0.1571 rad d) 59 = 0.07854 rad

175

The numerical values of the gauge points conform to the new system, in respect
of degrees, minutes and seconds of arc:

09 =  63.66
o = 6366
0°€ = 636600
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18.© Trigonometrical solution of plane triangles

The advantage offered by the trigonometrical scales is not simply the availabi-
lity of function values. Of more impor-
tance, function values can be used in
calculation without their being read
from the scales.

The law of sines is a convincing exam-
ple of the efficiency of the slide rule in
solving proportions:

a b
sina  sinf

When one of these ratios is set up by bringing the length on scale C opposite
the corresponding angle on scale S or ST, all other parts of the triangle can at
once be read.

In practice this law is most often applied in the case of right iriangles, in which
we have y = 90°, siny = 1, angle a = (90° — f) and angle § = (90° — ). The
law of sines is then rearranged as

— T TG Y

a b c a b L

sine sinf siny

and further tan o = -E— }

Depending on the given elements, there follows one of two procedures:
1. Given any two parts (other than those of case 2).

2. Given the two short sides a and b.

Example to case 1:

Given:c=5,a=3

Required: «, §, b.

Note that: f# = (90° — )

c_a L
cos

el

. Fig. 50. Hypotenuse given

1 sing

By setting the hypotenuse 5 on scale C over 1 on scale D (function value of
sin 90°), the angle o = 36.88° is al once found on scale S opposite the short
side 3 on C. Without moving the slide, bring cursor over 8 = 36.88° (red figures
of scale S). The side b, corresponding to the angle § can then be read on scale C,
i.e. 4.

The procedure is the same if a short side and an angle are given. The sine
ratio is established from the short side and the subiended angle on scales S
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and C. On occasion it is of advantage
to work with scale CF instead of C, to
avoid traversing the slide.

Example 1o case 2:
Given: a=3,b=256
Required: a, B, ¢

1
Note that: tana = a X N
sine =a X —

c

1
tane = 3 X — —> tana < 1

6

2 T ¥ e
8T i :
E"ir é&-— :
E_I‘l'zl' o LT R ‘
4 :

26.6°

¢ .Fig. 51 Two short side given -

Setting 1 of scale C over the shorter side 3, x = 26.6° is read on scale T1 over 6
on scale Cl. Without moving the slide, move the cursor to 26.6° on scale S and

read ¢ = 6.71 on scale Cl.

a a
Then from sina = < there is the proportion — = —— -

sina °
= — 26.6° = 63.4°,
1 e 90° — 26.6° =63

Ifa > b, thatisx > 45° the angle is not read on T1 but on T2. The remaining
steps in the solution are exactly as described above.

Example to case 2:

Given:a=2,b =45

Required: «, f, c.

If, in solving a right angles triangle, the
shortest side is identified as side a, the
required values can be found from the
following proportion:

1fa 1/b ~ 1)c’

The shortest side a = 2 is set on scale
Cl over the right hand index 1 of scale
D. Over b = 4.5 on Cl the value of

= 23.95° is read on T1. The hairline
is then brought over sinx = 23.95° on
scale S and the hypotenuse ¢ = 4.92
read on scale Cl.

B = 90° — 23.95° = 66.05°.

£
18.1, Complex numbers

These two cited procedures for the
solution of right triangles have special
significance in connection with coordi-
nate and vector calculations and in
work with complex numbers. They
apply in problems of conversion from
rectangular coordinates to the polar
form and vice versa.

Complex numbers in the coordinate
form Z = a + ib can easily be added
or subtracted. The vector form

Z=rxe®= rig is better suited o

S S—— T

| 0 3
g w -
! st 7 <ere
F-.n___ e ——<ttan |
kT2 - <ttan |
' QF ntx 7
* F nx {
. 1

for. i
F e (X7 ':':' "
fs [ |
. [®]] x i
'_ P : - -xt' ‘
I8 Pre 25
Bt Dk ae e
fFig. 52 v S Aot SRR 1
It 1
E: !
¥
§
}
e e x
[Fig.5 Ax Ay<srfe
{ Fig.5¢ Zma+lbm rlp
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multiplication and division. For this reason the conversion of one form into
the other must often be performed.

Examples: Z=454i13 = 4.68/16.13°
Z =6.7/49° = 4.39 4+ 5.05

The process of solution is shown in fig. 54 and follows the description of methads
of solving right angled triangles given above.

G’) The LogLog scales

The Loglog scales are divided as logarithms of logarithms and are referred
to the fundamental scales C and D. In the ARISTO StudioLog the range 10-3
to 10+5 is displayed in eight sections, four with negative exponents e~*, identified
as LLoo, LLO1, LL,02 LLO3 from 10-5 to 0.999 and four with positive exponents,
eX, marked LLO, LL1, LL2, LL3 for 1.001 fo 105. In the ARISTO Studio the scales
LLoo and LLO are not included; the range 10-5 to 103 is displayed in six sections
only, three with negative exponents and three with positive exponents. Readings
taken on the Loglog scales are unique values, that is to say, the value, e. g.,
1.35 denotes only 1.35 and cannot be read as 13.5 or 135, as on the funda-
mental scales.
The Loglog scales LL and LLO are reciprocal one of the other. They permit direct
readings of reciprocals of numbers less than 2.5 with greater precision than is
possible with scales Cl or CIF.
1

Example: To170 = 0.98328
By means of the exponential scales problems of involution or evolution are solved
by addition or subtraction, respectively, of scale lengths. Thus, required powers,
roots, and logarithms within the scale range can be calculated.

494) Powers and roots with exponents 10 and 100

The Loglog scales are so arranged that, by passing from one scale to that next
to it, the tenth power or the tenth root of a number set on one scale can be read
at once on the other, according to the direction in which the move is made.
This relationship is clearly shown by the examples in fig. 55, for a setting of
the value 1.015 on LL1.

Examples: Reading
ot 10 on scale |
1.015%1 = l/‘-°‘5 =1.00149 LLo
1.0157 =1.015 LL1
1.015'% = 1.1605 LL2
1.0151%0 — 4.43 LL3
1
o = 1.0151%0 = 02257  LLo3
10:510 =1.0151 = 08617  LLo2 !
1
e 1.0157 = 098522 LLot

: Hg._SS'_-; Arrangement of LL scales J

= 0.99851 LLoo

Variations of readings for the number series of fig. 55:

10 100 ‘
VA.As = 1.1605 Vo.2257 = 0.98522 0.9852210 — 0.8617 1.0014970%0 — 443

Problems such as the above will seldom arise in practice, but study of them
will promote a better understanding of the construction of the Loglog scales.

P
1?.2) Powers y = a*

Just as muitiplication is carried out with the fundamental scales, so raising a
number to a power is accomplished with the LL scales,

Procedure:

a) Use the cursor to set the initial or terminal index of C to the base “‘a” on the
appropriate LL scale.

b) Bring the cursor hairline over the value of the exponent on scale C.

¢) Read the power y under the hairline on the appropriate LL scale.

With the slide set to the value of the
base ‘“a” we obtain a complete table

of values of the function y = a*.
Fig. 56 shows such a setting for the
function y = 3.2, in which the cursor
hairline is over the value of the expo-
nent x = 2.5 and its decimal variants.
Examples Reading on scale
3225 =183 LL3
3.9 = 1338 LL2
3.20925 — 102956 LL1
3.20005 — 1002912 LLo
P LU
3225 = 00546 LLos e
3.208  _— 07476 LLo2 [ L 5o aoons
0025 _ 0971 LLot wy
3.2 0.97134 EF‘_!- s
3.2700025 — 0.997096 LLoo

Reading rules:

a) When the exponent x is positive, set and read in the same scale group LLO —
LL3 or LLoo — LL03, using figuring of like colour. With negative exponents
switch from one scale group to the other, reading in unlike colour.

b) In conformity with the symbols given at the right hand end of each scale,

read on the adjoining scale of lower value, for each place that the decimal
point in the exponent is moved to the left (see examples in fig. 56).
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[T g VT o W TYITPICTT Ty
¢) When the base is set with the right | t14e : S0
hand slide index, all readings must t'. et [ _,..1
be taken on the adjoining *“higher” | B AT
value Loglog scale. % O b e 3 ;
L N
When a < 1 powers with positive ex- | ;,i’ - :.' o
ponents are found in the scale group F Bl - LA *;ﬁ
LLoo — LLo3; with negative exponents, | K- o - ¢
in scale group LL0O — LL3. [ 0% o |
FLUs x|
et = 15
0.68527 = 0.36 (fig. 57) leh ) r o
0.68527 = 2.78 S T .
¥ u—’__t o) .‘.‘.;‘
14627 =278 [ : e |
- onee |
14627 =036 s ASp LR D L ARESRT S
i Fig. 57 _Left hand index of C over base |
Fig. 58 shows the examples of fig. 57, == o i - MR
but with setting to the right hand index | ¥ 7 i)
of the slide. The result is not then to ; "% 1
be read on the scale on which the base Ue S
is set, but on the adjacent scale LL3- | Ll = o |
LLos. [ Les 555 o= il
Should the value of the base lie to- 'L.é-' R
wards the middle of the scale, asinthe | g 3 ,”3
examples given, it is of advantage to L K. - L ‘,'
employ scale CFin the calculation. The | * ° LI
whole of this scale (CF) is then avai- [ L% b \
lable for sefting exponents and re- | @ 1
sefting the slide is avoided, saving | §' ;; cro X ’d
time when tabulating. b Ly — _— :
| s iy
TR """:‘{
f m ot
e JEZ 3

19.3 Special cases of y = a* | Fig. 58 Right hand index of C.over base ;

The possible variation of exponent or base is limited by the range of the Loglog
scale sections.

19.3.4 y > 100000 and y < 0.00001

If the result of raising a number to a power exceeds the range of the Loglog
scales, the exponent must be expressed as a sum of two or more terms. The
power is similarly factored.

Example:

31417 = 31484647 — (31442 x 3.147 =0.955% x 10° x 3.02 x 10% =2.76x10°

Analogous procedure is, of course, appropriate for negative exponents.

19.3.2 0.999 < y < 1.001
(for ARISTO Studiolog only)

When the exponent is so small that the number raised to a power is less than
1.001 but greater than 0.999, the result cannot be read on the Loglog scales.
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The series expansion
2

3
X X X2 X7 3
a _1i—1!lnq+—2!ln ui—s!ln a+4 ...

provides in such cases an approximate solution in the form:
a**as1+ xlIna for [xIna| <1

When index 1 of C is set to the base a on the Loglog scale by means of the
cursor, the value of loge a is simultaneously set on the D scale (see section 19.4
and 19.6). Multiplication by x is achieved by moving the cursor along the C
scale and reading x loge a on D. This intermediate value, with 1 added or sub-
tracted, is the required power a** The smaller the exponent, the closer the
approximation secured by this method.

The example of fig. 56 can by this means be carried further, thus:
3.2000025 _ 1 4 0.0002908 = 1.0002908
3.2°0.00025 _ 1 _ 00002908 = 0.9997092

Should the exponent be still further reduced by change in the position of the
decimal point, the answer obtained by the method given above will be varied
only in respect of the number of zeros or nines immediately following the decimal

point. E. g., 3.20-000025— 1,00002908.

19.3.3 0.999 < a < 1.001

(ARISTO Studiolog only)
When in the power y = a* the base is greater than 0.999 but less than 1.001,
an approximation is again of service.

From the series previously quoted, a¥* =1 + x Ina. As a approaches 1, we
can write a = 1 + n and hence:

ad=(1+n*=14+xIn(1£n)
n3

né

2
@+n*=1+nxand (1 +n)*=1Fnx(for|nx| 1)

If the range of the LogLog scales will not permit setting the base a, scale D can
be used as an exponential scale. In this event, note a difference in procedure.
In place of a = 1 + n, we must set the value n. When the initial index 1ofCis
brought over n on scale D, the setting is for all practical purposes identical
with the setting of 1 + n on an exponential scale which could be regarded as
an imaginary Loglog scale covering the range 1.001 to 1.01 or 0.990 to 0.999.
The smaller the value of n, the closer the approximation In (1 £ n) = + n.

The value of the power is oblained, as usual, by a simple multiplication n X x.
To complete the result, the value found thus on D must be added to or subtracted
from 1, according to the sign of n. With larger exponents, the power will lie
within the range of the LogLog scales and the result can then be read direcily
from them.

i-g'—.-.a_

I+

NowlIn(1 + n) =+ n — n(for|n| <€1)

Examples:
1.00023%7 = (1 4 0.00023)%7 = 1.000851 Reading on scale D added fo 1
1.00023% = 1.00854 Reading on scale LLO

0.9997737 = (1 — 0.00023)>7 = 0.999149 Reading on scale D subtracted
from 1

0.99977%7 = 0.99152 Reading on scale LL0O
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1934 099 < y < 1.01
(ARISTO Studio only)

When the exponent is so small that the number raised to a power is less than
1.01 but greater than 0.99, the result cannot be read on the Loglog scales.
The series expansion
R X120 4 X
a*" = _Wna+ﬁn aian a+ ...
provides in such cases an approximate solution in the form:
a**=1+ xIna for{xhal|<1
When index 1 of C is set to the base a on the LogLog scale by means of the cursor,

the value of log  a is simultaneously set on the D scale (see section 19.4 and 19.6).

Multiplication by x is achieved by moving the cursor along the C scale and
reading x log a on D. This infermediate value, with 1 added or subtracted,

is the required power a™*. The smaller the exponent, the closer the approxi-
mation secured by this method.
The example of fig. 56 can by this means be carried further, thus:
3.20.0025  ~ 1 4 0.0025 x In 3.2
= 1 4 0.002908 = 1.002908
3.2-0.0025 = 1 — 0.002908 = 0.997 092

Should the exponent be still further reduced by change in the position of the
decimal point, the answer obtained by the method given above wiil be varied
only in respect of the number of zeros or nines immediately following the

decimal point.
E.g.  3.20:00025 — 10002908

19.3.5 099 < a < 1.01
(ARISTO Studio only)

When, in the power y = a%, the base exceeds 0.99 but is less than 1.01, the
solution is again obtained by approximation.

In accordance with the series expansion applied to the case reviewed in the
preceding paragraph:a** = 1 + x In a. Since a, in the present case, is near 1
we can write a =1 + n, from which we can further derive:

ax=(1+n*=1+xIn(1+ n)
n3

n?
+ = - = - —
In(1 + n) +n Zi 3
In(f4+n) =4+n (for| n | <€ 1)
1T+£n* =14+nx (for | nx | <€ 1)
(1+n)™> =1Fnx (for [ nx | <€ 1)

If the range of the LL scales will not permit setting the base a, scale D can be
used as an exponential scale. In this event, note a difference in procedure. In
place of a = 1 + n, we must set the value |nl.

When the initial index 1 of scale C is brought over n on scale D, the setling is
for all practical purposes identical with the setting of 1 + n on an exponential
scale which could be looked upon as an imaginary Loglog scale covering the
range 1.001 to 1.01 or 0.99 to 0.999. The smaller the value of n, the closer the
approximation In (1 + n) & + n.

The value of the power is obtained, as usual, by a simple multiplication n x.
To complete the result, the value found on D must be added to 1 or subtracted
from 1, according to the sign of n. With large exponents, the power will lie
within the range of the LL scales and the result can then be read directly from
the Loglog scales.
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Examples: Read on scale

1.002337 = (1 + 0.0023)37 = 1.00851 ~ Dand add 1
1,002337 = 1.0888 LL1
0.997737 = (1 — 0.0023)37 = 0.99149 D and deduct from 1

0.997737 = 0.9184 LLot

With the cursor hairline aligned over the left index of D, the amount of displace-
ment relative to the line for 1.01 on LL1 provides a good check on the amount of
error in the approximative computation. The maximum degree of error will
be introduced into the approximation when both sefting and reading take place
on scale D in substitution for the LoglLog scales.

19.3.6 Improving the accuracy

(ARISTO Studio only)
The precision can be improved when the disparity between reading on the
D scale and the actual LoglLog scale within the range 1.001 to 1.01 is corrected
by also applying both the linear and the quadrature term in the series expansion
to the previously discussed procedure.
A)In(1+n)=+n(1 Fnf2
B) e*X =1+ x(1+ x/2)
When the result is obtained from a LoglLog scale, only formula A need be applied
before making the setting on scale D. If, however, scale D is used exclusively
in a computation, corrections have to be applied to the setting as well as to the
answer (formula B).

for settings of the base on D
for readings taken from D

Example:

1.00233-7 = 1.008 54

For n = 0.0023 substitute the sefting
0.0023 (1 — 1/2 x 0.0023) = 0.0023 x 0.99885 = 0.002 297 by slide index on

scale D.
The operation required to determine the 3.7th power, viz. 1 4 0.002297 x 3.7,
gives 1.00850. This reading, because of its taking place on scale D, requires
correction by formula B, as follows:

0.00850 (1 + 1/2 x 0.008 50) = 0.008 50 x 1.004 25 = 0.008 54
After adding the ‘1", the final answer then is 1.00854 (exactly: 1.0085362). The
foregoing computation may at first sight appear rather involved and awkward

but will actually be found quite simple after some little practice, so that in time
the computer will be able to make the corrections by visual estimate.

Corrections of the kind above reviewed are no longer necessary when the
base drops below 1.001, because slide rule accuracy will then be equivalent to
that obtainable by approximation.

"{19_._4\- Powers y = e*

When the indexes of the slide and body scales are in coincidence, the rule is
adjusted to the equation y = e*. Because the base e = 2.718 on scale LL3 is
always aligned with the index of scale D, any power of e can be found by moving
the cursor to the exponent on D. Using the body scales only we obtain as examp-
les the results for the exponent 1.489 and its decimal variants:

e — 443 e 1489 — 0.2260

X149 — 1.1605 e 01489 08618

e0.01489 = 1.015 e-0.01489 = 0.98522

0001489 _ 1 001489 0001489 _ 0,99851

With further variation, we arrive once more at the equivalence
00001489 _ 1 0001489
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‘95 Rootsa = |/y

Evolution, with given radicands, can be carried through directly with the

exponential scales. The extraction of roots, the converse of raising to a power,

follows from division using the LoglLog scales and fundamental scale C. If the

example of a power, 3.22.5 = 18.3, given in chapter 19.2, is reversed, it will be
5 .

seen that by working in the contrary sequence we can read }/18.3 = 3.2.

The extraction of roots is more easily understood if the radix is expressed as
an exponent. The exponent can then be set on scale Cl or, if the base is e, on
scale DI.

In the following example the cursor of the ARISTO Studiolog is set to 3.5 on

DI and the root read on LL2 and LLoo. 1

a5, L1 s,  _1

Ve=e 33 =13307 Ve =e 39 =07514
Procedure:

a) Set the radicand y on the appropriate Loglog scale over the radix on slide
scale C.

b) Read the value of the root under the initial or final index of the slide scale
on the appropriate Loglog scale.

The rules for reading the result, given in section 19.2, are again applicable.

It should be noted that when a reading is to be taken under the right hand index,

reference must be made to the next lower LoglLog scale, LLO — LL3 or LLoo —

LLo3.

o slcnro b T I e S S |

0.77. 1 i bl e !
V21 = 521 575 = 0.0192 [ Loo——— o-tam |
o ge— cam ]
21

Le—— an
7.7 . W
1 LLes X { o SR
V21 = 1.485 = 0673 | A e 1
7.7 - . 3o
Va1 -} L
Foa - |

! K ol 1A
g 1 b5y 5
V21 = 1.0403 — =096122 L x|
77 -5 540
Va1 [ S x "-.,' 3
770 ; | ts—— 2 =1
V21 =1.00396 - =0.99605  Ua—— Ol Lanid?
Va1 e T =
e — o o
! el - ] e < 48
Fig. 59 Roos ° !

19.6 Logarithms

19.6.1 Logarithms to any base

Required logarithms to any base can be found with the Loglog scales. By
reversing the process of raising a number to a power, we obtain its logarithm,
as is immediately seen if we write:

y = a* x = log_y (read: logarithm of y to base a).

The finding of a logarithm is thus identical with the problem of a power for
which the exponent is required.
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Procedure: 2 WY oo TR TR
a) Set cursor to base a on the appro- 8 1 B} ¥ i
priate LoglLog scale. P s v id
b) Bring the initial or final index of él.l.z ‘ 0 _l'_-_rI
the slide to the cursor hairline. ] i TR
qn o |
¢) Set the value of y, with the cursor, £ - 3 s |
on the LL scale. - tLe i ) et J AR :
d) Read the logarithm on scale C un- [ o5 1o 1'25 =30 2
der the hairline. pe o 4
The position of the decimal point can be determined from the relationship
log, a=1.

With the initial index of slide over base a, all values to the right of the value a
on scale C are greater than one and all values to the left of a on scale C are

less than 1.

Reading rules:

a) Passing from one LoglLog scale to the adjacent scale, in the sequence LL3,
LL2, LL1, LLO or LLo3, LLo2, LLot, LLoo, results in a shift of the decimal point
in the logarithm by one place to the left. A change of scale in the opposite
direction calls for a shift of the decimal point to the right.

b) The logarithms will be positive (negative) when their antilogs and bases
are set on like (unlike) coloured Loglog scales.

Examples for practice: log, 16 =4.0
log, 1.02 = 0.02857
log, 0.25=—2

[N E— -

19.6.2 Logarithms to base 10

If index 1 of scale C is set to base 10 | § H

on LL3, then for any number setonan [y AN o !
LL scale, the decadal logarithm canbe ,,, - FPYR
read on scale C (see figs. 61 and 62). L iey an
The frequently required decadal loga- ;¢ prYem
rithms can also be found from the | 4 " A

usual log scale L on the slide, if the ‘g 61 1g1.92=02838 =~ +
anti-log is set on scale C. Scale L gives N i e
only the mantissa and the characteristic | - - -r T Cw N
must be added in accordance with the
rule “number of places minus 1", as
when a table of logarithms is used. For
every plain number (anti-log) on scale
C, the logarithm is directly available
on scale L and conversely, given the
logarithm, the anti-log can be read
directly from scale C.

To use scale L, it is only necessary to
move the cursor and thus the finding | L
of decadal logs is more simple than ! ©Cl
when the Loglog scales are used.
However, within the range of scale
LL1, the Loglog scale gives greater
precision in reading.

FESETE

1.03 e

Examples:
1g 1.03 = 0.01283 with scale LL1 O G G S §
Ig 1.03 = 0.013  with scale L {Fig. 62 Logarithms fo base 10

EEEE®
%
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Examples for practice: log (30 = 1.699

Refer to fig. 62 log, 42 = 0.301
log,,1.03 = 0.01283
log,00.015 = — 1.824
log,0.5 = —0.3010
log,s0.1 = —1
log, 46 = 0778
log g 1.14 0.0569
log1°1.01$ = 0.00647

When sefting with the right hand index of scale C, all results will lie on the left
of the base and are therefore < 1, e. g., 19,49 = 0.954. Logarithms of numbers
< 1 are negative.

19.6.3 Natural Logarithms

T W Y -y —sereresrpmre

Logarithms to base “e” are simply 3 T @ O 0 o

found by transfer fromthe LogLogscale  LLs -

to the fundamental scale D (fig. 63). wa oA
Lt : TE_."- 1

Examples: |
LLe : : oo

In4375 = 1475 W ke @l A

Fg.63 In45 m 1504 ° i ., .. |
In1.27 =023 - - "ol
b Ao ln"“:mw PR

In 0.622 = — 0.475
In0.05 = — 2.994

-20.  Further applications of the LoglLog scales

So far, of the slide scales, C only has been used in conjunction with the LogLog
scales to show the essential relationships. Naturally, however, other slide scales

can be used. For example, scale B can be used for a power such as aV‘ and
similarly scale S at the ARISTO StudioLog on the stide is convenient for the term

%" X The reciprocal scales offer still further possibilities in logarithmic com-
putations. Scale CF, replacing scale C, can be used with the Loglog scales to
avoid slide re-sefting during tabulation, if the base occurs near the middle of the
slide,

20.1° Proportions with the LogLog scales
If the index 1 of slide scale C is set to a base on a LoglLog scale, the powers to

any exponent and also the logarithms of any number, to this base, can be read.
A base, a, set on a Loglog scale, can thus be regarded as a ferm in a proportion.

2044 y, =a" y, =a™

logy, =nloga log y, = mlog a

loga _ logy, _ log y,

1 n m
Ina In Y4 Iny,
or = =
1 n m
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If three terms of a proportion are known, the fourth proportional can be calcu-
lated and with the initial sefting, a number of terms in the same ratio can be
found. Here again is seen the advantage of the principle of proportionality, a
method of calculation for which the slide rule is particularly well adapted, as
examples will show.

20.1.2

m

y=o"—>logy=L:—logo

logy loga |
=— !

m 3 :
6.8 g e A ik 4

217 logy log4d ﬁ’_ 6 log 4.3 _ log 39.4 o '\'_:

y =43 —»W = ——2'7 L s R 2.? g 1 W - J

After setting 2.7 on C over 4.3 on LL3, the result 39.4 will be found under 6.8
on C, and read on LL3.

Transformations of this problem will similarly be solved:

27
y = 1/4_36.8 or y?7 = 4358

20.1.3

Many natural laws can be expressed in proportional form, if the chan'ge or
difference in one variable is proportional to the change or difference in the

logarithm of the other:
log y, — log y, = const (X, — xq)
a
Because loga — log b = log 5

. g
we may write log T = const ("2 — x1)
1

A change from x, o x,, by an amount i, resulls in a change of y, to y,. If we

y . _ea .
denote the ratio——zby r, representing the residue of the initial quantity, the
Y4

above equation can be written [ r_—-n;-"ﬂ--l-.r-—--_-_-‘; T =)
i [
logr logry logr, f LLos papyo—
—=c¢onst=— — =— = .. T --]
! " 2 { ot Ju
Example: Radioactive decay l e - .
. -

The decomposition rate of a substance i & 1‘ ]
is known to be 409, in 30 days, i.e., | ® - ]
the residue is then 60%,. After how | x I
many days will the residue be 20%,. | L gx |
i

Hereiy =30, r, =06 r,=02 | & ¥
g 545 3 P
log 0.6 log 0.2 i f
= whence ! ) . i

30 x x = 94.5 days Fig. 66
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20.1.4
If a logarithm is to be multiplied by a constant factor, the constant is set on C,
over the base of the logarithm on the Loglog scale. A tabulating position for

the multiplication is at once set up. ) -

For x = c log,y, write in proportional | §: 0 0
form: (D
L3
x ¢ c ! LLs
log y R log a T
2 x logy 100 = 4 e L L K
o T

2 x logy1.8 = 0.511 Fig. 67 xm2xlgy L0

As shown in fig. 67, all logarithms to base 10 can be multiplied by the constant 2.
The process applies also to the LLO scale group, with logarithms of numbers < 1.

In physics and telecommunications, it is often necessary to calculate the decibel
(dB) value for a given amplitude ratio.

A A1
dB ~ 2019 A,
Examples: 20 dB =1201g10

40 dB = 201g 100
5.11dB = 201g 1.8

20.2 Hyperbolic functions

The logical arrangement of the LogLog scales makes possible the simple deve-
lopment of hyperbolic functions. Because the values of powers with negative
and positive exponents are mutually opposed, a simple movement of the cursor

gives e" * and e, whence the hyperbolic functions are easily derived.

sinh x = % (* —e™)

1
cosh x = - (e + ™)

(¥ —e™)
(X +e™)

tanh x =

21. The cursor and its marks

214  The mark 36

(868, 869. 0968 and 0969 only) .
The cursor has, on the front face (fig. 68) a short line upper right, corresponding
to the value 36 on scales CF/DF, with respect o a value set on C/D under the
middle cursor line. This enables multiplication by 36 to be performed by cursor
transfer from C/D to CF/DF, a con-
venience when converting:

. . i

1 hour = 3600 seconds N T 3 |
1mjs = 3.6km/h 7l e o T |

s’ i * ; {
1 = 3600 | /{ e L \ ;
100% = 360° K| BN
1 year = 360 days l =3l l . \' \L
1kWh = 3.6 x 105) -

m L X /7 \ ]

EN = 36 g (conductivity) Fig. 68 Fig. 69
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2!..2 The gauge marks 2
““’ (869 and 0969 only)

In addition to the mark 36, the front face of cursor pattern L 0969 (fig. 68) has
at left and right hand sides reference lines for the factor 27z. These lines lie over
scales C/D, CF/DF and are interrupted lines, to avoid confusion with the prin-
cipal hairline. The 2T marks are of especial importance in frequency calculations.

Multiplication by 2 is accomplished by bringing the right hand 27 mdrk over
the factor involved and reading the product under the left hand 2z mark. The
converse procedure achieves division by 2.

Example 1:

P
Find the frequency f of an oscillator i
if angular frequency w = 372 Hz
from the relationship f = w/2x. Wope-__]

Move cursor to bring the left hand |-
2t mark over 3—7—2on D.Beneath |~ IS_'
the right hand 25 mark read f =
59.2 Hz.

Example 2: !

Find the inductive resistance X| = £
27fL of a coil of frequency f= |-
59.2 Hz and inductance L=21.5 mH.

Set 1 on CF under 5—9—2 on DF. ! |" _g% |- e i
Then move cursor so that the right | l;/ ! ' : L/’ ? : l
hand 27 mark is over 2—1—5 on | - .

CF. The inductive resistance XL = | ST s

8 Q can then be read on DF, under @ N —id  Nm /!

the left hand 2t mark. . Fig.72 " Fig.73%

In conjunction with the 27 marks reference to scale pairs C/D, CF/DF allows
multiplication or division by 2 without slide setting. Multiplication by 2 follows
when the upper right hand 2+ mark is brought over the relevant factor on DF.
On D beneath the left hand 27 mark the result is read at once. The converse
sequence of cursor setting and reading provides the quotient of a division by 2.

-

‘213 Marks for circular areas, weights of bar steel

On the reverse face of the cursor (fig. 69) are two short lines, upper left and
lower right, displaced from the main cursor line by a distance proportional to
the value n/4 = 0.785, (referred to the scale of squares). These are used in
finding circular areas from the formula A = d?2 st/4. If the main cursor line is
brought over the diameter on scale D, the area can be read on scale A under
the upper left short line. The same relationship holds between the lower right
and main cursor lines,

Where the metric system of measures is in use, these special cursor lines can be
used to find the weight of bar steel, because the specific weight of mild steel is
7.85 g/cma. If the bar diameter is set on D with the main cursor line, the weight
of unit length is read at once under the upper left short line. The index 1 of
scale B is set fo the reading under the upper left line and the cursor moved over
the fotal length of bar stock, to find the total weight.
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This facility is not available with model 01068, because in this the doubled base
length contains the width corresponding to the factor -% only once, as one

passes from the lower right to the upper left cursor lines.

214 The marks kW and HP

The distance between the main cursor line and the upper mark gives, with
reference fo the scale of squares, the factor for converting kW to HP and vice
versa (see fig. 69).

If, for example, the main hairline is set to 20 kW on the scale of squares, then
under the upper right hand line will be found the equivalent HP, 26.8. Conver-
sely, when the upper right line is set to 7 HP the main hairline will indicate the
equivalent kW, 5,22,

On the 20 in. model No. 01068 the kW and the HP mark are aftached to the
upper left and the upper right cursor hair, respectively.

21.5 Removing the cursor

The cursor hairlines are so adjusted that transfer from one face of the rule to
the other is possible at any stage in a calculation. The cursor can be removed, for
cleaning, without disturbing this adjustment — provided that the screw on the
cursor bridge piece is not lost.

To remove the cursor, hold firmly, with one hand, the screwed cursor bridge
piece. The other cursor bridge piece — that without the screw — can then be
released by a rotary movement of the screwed cleat and cursor glasses across
the face of the rule, as shown in fig. 74. Cursor glasses and bridge pieces can
then be removed.

When replacing the cursor, take care fo set it with the gauge marks kW and HP
over scales A and B. The sprung cursor bridge piece should then be brought
over the cursor glasses and the assembly closed by light pressure.

Fig.74

21,6 Adjustment of the cursor

After loosening the adjustment screw of the cursor. the rule should be turned
over so that the cursor hairline can be set to the auxiliary marks on the LL
scales. Without moving the cursor, turn the rule over again and place it on the
table. The now facing cursor hairline can be set to the right hand index marks
of scales A and D. This done, the adjusting screw can be re-tightened.
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:22.‘ The scale of preferred numbers 1364 (NZ scale)
7 (Models 0968, 0969 and 01068 only)

22.15 Construction of the NZ scale

Standards and standardisation have become important factors in rationalised
production and in this technology preferred numbers assume ever greater
significance. Preferred numbers (BS 2045, ISO R3, R17) are selected values
from a geometric series, developed from the denary number system. There is a
very useful relationship between the graduations of the fundamental scale D
and the associated mantissa scale L.

Opposite the equal intervals of the mantissa scale L are the corresponding
plain numbers on scale D. The principal values tabulated as preferred numbers
(BS 2045, ISO R 3, R 17) are these numbers, rounded off.

A scale of preferred numbers can be derived if the D scale is disregarded and
the corresponding graduations of the mantissa scale are marked as preferred
numbers.

On scale 1364, the ten numbered divisions of the upper mantissa scale are
located over the preferred numbers of the R 10 series. The division of the man-
tissa scale into 20 equal divisions leads to the preferred numbers of the R 20
series and, with division into 40 equal intervals, to the R 40 series.

The preferred numbers are also marked against the mm scale: R 10 series by
arrow points, R 20 by graduated lines and R 40 by dots. This provision enables
the preferred numbers to be used in drafting.

~

222 Application of the NZ scale

Scale 1364 is, first of all, an aid to memory, serving to exhibit instantly the com-
monly used preferred numbers. These are also of practical use when construct-
ing single- and double-deck logarithmic graphs on normal squared graph
paper. Because the multiplication or division of a preferred number by a pre-
ferred number always yields a preferred number, a graph doubly divided in
preferred numbers serves for the graphic solution of problems.

The combination of preferred numbers and mantissas in a single scale offers
the advantage that logarithmic approximations are simplified. The preferred
numbers stand opposite the simplified logarithms of the mantissa scale and the
latter can easily be added or subtracted mentally. By prefixing the characteristic,
as must be done when using a table of logarithms, the decima! point can be
correctly placed and the error in the result is a maximum of 3% if the R 40
series is used in the calculation.

In many cases the preferred number scale can equally well be used, if numbers
are strongly rounded off. For example, if we take 7z = 3.15, for y = 7.85 we
take y = 8. The mantissas corresponding to the preferred numbers are read
from the mantissa scale set over the preferred numbers. It is very important
to take into account the characteristic, on the presence of which this method of
calculation essentially depends.

With complicated formulae, it is of advantage to write down the logarithms as
read, so that a check can be made by addition. Natural numbers less than 1
(e. g., 0.8) are often best expressed as negative logarithms, e. g., Ig 0.8 = — 0.1
is better put in the form 19 0.8 = 0.9 — 1.

The graduations of L and D offer a more exact method of logarithmic calculation,
since they provide, graphically, a three place table of logarithms.
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22.3 Logarithmic scales

For the exact sefting out of logarithmic scales or chari-nets, the scale 1364
carries logarithmically divided scales of base length 200 mm, 150 mm, 100 mm,
50 mm and 25 mm. Base lengths 125 mm and 250 mm can be taken from the
slide scales of the rule.

m Conversion factors for non-metric units

In the study of English, American and Continental literature, differences between
anglo-saxon and metric units of measurement give rise fo difficulty and rela-
tionship between the system must often be laboriously searched for in hand-
books. This searching is obviated by the assembly of the most imporiant con-
version factors in a table on scale 1364.
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