PATENT SPECIFICATION

DRAWINGS ATTACHED

878,057

Date of filing Complete Specification: Oct. 8, 1957.

Application Date: July 18, 1956.

No. 25406/60.

(Divided out of No. 878,056).

Complete Specification Published: Sept. 27, 1961.

Index at acceptance:—Class 106(1), B5(B: GX).

International Classification: - G06g.

COMPLETE SPECIFICATION

Improvements in or relating to Slide Rules

We, Hubert Boardman, a British Subject, of 388, Bury Road, Rochdale, in the County of Lancaster, and A. G. Thornton Limited, a British Company, of Harper Road Wythenshawe, in the County of Lancaster, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:—

This invention concerns devices with relatively movable members bearing co-operating logarithmic scales (hereinafter called "slide rules") and has for its object the provision of a slide rule which has scales enabling the real roots of cubic equations more easily to be determined than has hitherto been possible. The term "slide rule", when used herein and in the claiming clauses hereof is intended to include not only the flat longitudinal slide type but also types having a cylindrical circular or other shape.

Quadratic equations may be considered to fall within one or other of two categories when by and "c" are positive, viz.

Category I
$$x^2 \pm bx + c = 0$$
 (1)

Category II
$$x^2 \pm bx - c = 0$$
 (2)

and the real roots of such equations can be determined by a slide rule having special scales as described in our co-pending application No. 22180/56 (Serial No. 878,056), from which the present application is divided.

Turning now to cubic equations, a cubic equation of the form

35
$$x^3 + ax^2 + bx + c = 0$$
 (3)

and called herein an equation of Category III has a related equation of the form, applicable except when g (defined below) is zero,

$$Z^3 - HZ + 1 = 0 (4)$$

[Price 3s. 6d.]

The value of H in terms of a, b and c may be derived as follows:—

Where

$$f = \frac{a^2}{3} - b \tag{5}$$

and

$$g = \frac{2a^3}{27} - \frac{1ab}{3} + c \tag{6}$$

Then

$$H = \frac{f}{3\sqrt{g^2}} \tag{7}$$

Also

$$x = Z^3 \sqrt{g} - \frac{a}{3} \tag{8}$$

Equation 4, with positive and negative values of Z considered, may be represented by a graph of the form shown in the single figure of the drawing accompanying the provisional specification. This graph can be considered in five sections:—

(1) o to n for negative values of Z range -.1 to -1.0

(2) n to m for negative values of Z range -1.0 to -10.0

(3) p to q for positive values of Z range .01 60 to .1

(4) q to r for positive values of Z range .1 to 1.0

(5) r to s for positive values of Z range 1.0 to 10.0

The invention, is based on the appreciation of the fact that a cubic equation of the form specified as category III can (except when g is zero) be reduced to a related equation of the form specified and that then, the roots of the related equation can be solved by mathematical relationships involving only one variable.

If H scales corresponding to Z values of -.1 to -10.0 only are used then in nearly all cases it will be possible to evaluate a real

878,057 2

root and to convert the equation eventually to a quadratic equation and to complete the solution by evaluating the roots of that quadratic equation in accordance with the invention, described and claimed in our co-pending application aforesaid, such scales as are necessary being, if desired, provided on the same rule. Alternatively H scales covering the full range of Z values hereinbefore specified may 10 be used.

According to the present invention a slide rule is characterised by the provision of a simple logarithmic scale and a further logarithmic scale covering values of H (as herein defined) for a chosen range or ranges of values of Z (as herein defined), the scales being in such fixed relationship one to the other that, for related equations of category III where the H value is within the range of the H scale, the numerical value or values of Z may be read off on the first mentioned scale at a position or positions corresponding with the H value or values on the H scale.

There will now be described, by way of example, a slide rule of the flat longitudinal slide type, especially designed for the evaluation of the real roots of cubic equations.

Reference will now be made to the accompanying drawings, in which:-

Fig. 1 is a front view of the rule; Fig. 2 is a rear view of the rule; and Fig. 3 shows the back of the slide.

The particular rule illustrated has scales for dealing with quadratic equations in accordance with the invention described and claimed in our copending application aforesaid, these comprising, on the stock:

(1) A logarithmic scale called the D scale, numbered 1 to 10, the distance between the 1 and 10 being the length unit of reference. (2) A logarithmic scale called the A scale, consisting of two sections of logarithmic scale each of ½ unit and together numbered 1 to 100. It is positioned so that 1 on the D scale aligns with 1 on the A scale and 10 on the D

scale aligns with 100 on the A scale. (3) Also on the stock an N_s scale and an N_D scale, and on the face: -

(1) A scale called the C scale similar to the D scale.

(2) A scale called the B scale similar to the A scale.

(3) A reverse of C scale called RC and (4) A reverse of B scale called RB.

55 The 1 and 100 on the B scale 100 and 1 on the RB scale 10 and 1 on the RC scale align respectively with 1 and 10 on the C scale.

In order to enable the roots of cubic equations to be evaluated the slide rule needs, in addition to a simple logarithmic scale (e.g. the D Scale) appropriate H scales.

In the embodiment being described, scales H_{on} , H_{nm} , H_{pq} , H_{qr} , and H_{rs} numbered according to H values (positive or negative) will be prepared, corresponding to each section of the graph previously referred to, by the following method:-

A table of values of H for specific values of Z (positive or negative) is prepared by direct substitution in equation (7) and then, using selected Z values for purposes of inverse interpolation, Z values (positive and negative) for specific values of H are obtained.

Then, to the reference logarithmic unit of the D scale, line dimensions, from a datum, for H values on scales to serve for portions o.n. and n.m. i.e. for Scales Hon and Hnm will be according to

80

100

Log [-(**Z**)]

and for portions p.q., q.r. and r.s. i.e. for scales $H_{\rm pq},\,H_{\rm qr},$ and $H_{\rm rs}$ will be according to

Log Z

and assuming the scales are arranged on the stock of the slide rule, the datum of each of the scales will be in alignment with D_1 and run towards D₁₀.

Z values by projection from the new scales to the significant figure value D scale are as follows: -

For

$$\begin{array}{llll} H_{on} & -.1 \text{ to } -1.0 \\ H_{nm} & -1.0 \text{ to } -10.0 \\ H_{pq} & +.01 \text{ to } +.10 \\ H_{qr} & +.10 \text{ to } +1.0 \\ H_{rs} & +1.0 \text{ to } +10.0 \\ \end{array} \hspace{0.5cm} \textbf{95}$$

In an alternative arrangement, the scales are applied as reciprocals of Hon, Hom, Hqr or Hrs by longitudinal inversion.

In other embodiments either the direct or reciprocal forms of Hon and Hnm may be produced as a continuous scale and related to scale such as the A and B scales previously referred to. The same applies to H_{pq} , and H_{qr} or H_{qr} and H_{rs} . Similarly scales H_{pq} , and H_{qr} and H_{rs} may be continuous and related to a scale such as an F scale, which comprises three logarithmic sections, 1 to 10, 10 to 100 and 100 to 1000, each being one third the length of the unit D scale. $\bar{1}$ on the F scale aligns with 1 on the D scale and 1000 on the F scale with 10 on the D scale.

For convenience the rule illustrated in the drawings has H_{nm} and H_{on} scales marked on 115 the front of the rule stock for direct reading of Z values on the D scale by means of a cursor whilst H_{pq} , H_{qr} and \tilde{H}_{rs} scales are marked on the back of the slide, the H values being set against a datum line in the window illustrated and the Z values being read at C1 on the D scale. The F scale is provided in the rule illustrated to facilitate the evaluation of cube roots, as will presently be apparent.

25

30

35

40

When H is positive and equal to or greater than $3\sqrt{6.75}$, viz. 1.88988 the related equation has three real roots. For values of a, b and c that result in $H=3\sqrt{6.75}$, of the three real roots, two are equal.

In cases where H is less than $3\sqrt{6.75}$ of the three roots only one is real, namely, that which relates to the o, n, m portion of the graph.

The following examples will serve to illustrate the manipulation of the special scales just described.

EXAMPLE 1.

To determine the real root or real roots of the cubic equation

15
$$x^3 - 16x^2 + 73x - 90 = 0$$

In this case with reference to equation (3)

$$a = -16$$
 $b = 73$ $c = -90$

By normal arithmetical approach evaluate

f, from equation
$$(5) = 12.33$$

and 20

45

g, from equation (6) =
$$-4.074$$

The values of $3\sqrt{g}$ and $3\sqrt{g^2}$ may be found on

the D and A scales respectively in alignment with the appropriate "g" value on the F

$$3\sqrt{-4.074} = -1.597, \ 3\sqrt{g^2} = 2.550$$

$$H = \frac{f}{3\sqrt{g^2}} = \frac{12.33}{2.550} = 4.836$$

Since this H value is positive and greater than $3\sqrt{6.75}$, there are three real roots.

H values of 4.836 will be found on the $H_{\rm nm}$, $H_{\rm qr}$ and $H_{\rm rs}$ scales, and using the cursor and the window datum setting, as appropriate, for projection to the D scale, the respective Z values, viz. -2.296, .2086 and 2.088, may be obtained.

$$x=3\sqrt{g}$$
. $Z-\frac{a}{3}$

Then since

$$3\sqrt{g} = -1.597$$
 and $a = -16$
Where

x1, x2, and x3 are the roots

$$x_{1} = (-1.597)(-2.296) - (\frac{-16}{3}) = 3.67 + 5.33 = 9$$

$$x_{2} = (-1.597)(.2086) - (\frac{-16}{3}) = -.333 + 5.333 = 5$$

$$x_{3} = (-1.597)(2.088) - (\frac{-16}{3}) = -3.333 + 5.333 = 2$$

Thus the values of x which satisfy the equation are 9, 5 and 2.

EXAMPLE 2.

Solve: -

$$x^3 + 6x^2 + 16x - 38 = 0$$

With reference to equation (3)

$$a=6$$
 $b=16$ $c=-38$

then

f from equation
$$(5) = -4$$

g from equation (6) = -5455

 $3\sqrt{g}$ from the slide rule = -3.78

$$3\sqrt{g^2}$$
 from the slide rule = 14.29

H from equation
$$(7) = -.28$$

Here H is less than $3\sqrt{6.75}$ viz. 1.889 so there is only one real root. From the slide rule when

$$H = -.28$$

$$Z = -.907$$

This is obtained by cursor projection from the -.28 line on the H_{on} scale to a D scale numbered -.1 to -1.0.

Then x from equation (8) since g, Z and a are known,

$$=(-3.78)(-.907) - \frac{6}{3} = 1.428$$
 70

In order that the rule may be used for evaluating, according to known techniques, the complex roots of quadratic equations an f(s) scale is provided on the stock, aligned with the D scale and enabling $\sqrt{1-s^2}$ values to be read off on the f(s) scale from the s value on the D scale.

WHAT WE CLAIM IS:-

1. A slide rule characterised by the provision of a simple logarithmic scale and a further logarithmic scale covering values of H (as herein defined) for a chosen range or ranges of values of Z (as herein defined) the

45

55

scales being in such fixed relationship one to the other that, for related equations of category III where the H value is within the range of the H scale, the numerical value or values of Z may be read off on the first mentioned scale at a position or positions corresponding with the H value or values on the H scale.

2. A slide rule as claimed in claim 1 in which the H scale covers H values for a range of Z values from -.1 to -10.0.

3. A slide rule as claimed in claim 1 in which the H scale covers H values for ranges of Z values from -.1 to -10.0 and from 15 .01 to 10.

4. A slide rule as claimed in any one of claims 1 to 3 further characterised by the provision of additional conventional scales for the

determination of the squares of numbers and the cube roots of numbers by direct manipula-

5. A slide rule as claimed in any one of the preceding claims further characterised by the provision of additional conventional scale or scales for the determination of values of $\sqrt{1-s^2}$, where s is given, by simple manipulation

6. A slide rule having a simple logarithmic scale and H scales said scales being substantially as hereinbefore described with reference to and as illustrated in the accompanying drawings.

For the Applicants, E. K. DUTTON & CO., Chartered Patent Agents, 57, Market Street, Manchester, 1.

PROVISIONAL SPECIFICATION

Improvements in or relating to Slide Rules

We, Hubert Boardman, of 388 Bury Road, Rochdale, in the County of Lancaster, a British subject, and A. G. Thornton Limited, of Harper Road, Wythenshawe, in the County of Lancaster, a British Company, do hereby declare this invention to be described in and by the following statement:—

This invention concerns slide rules, and has for its object the provision of a slide rule (which may be of any type, e.g. flat or cylindrical) which has scales enabling the real roots of quadratic or cubic equations more easily to be determined than has hitherto been possible.

Quadratic equations may be considered to fall within one or other of two categories when "b" and "c" are positive, viz.,

Category I
$$v^1 \pm bx + c = 0$$
 (1)

Category II
$$x^2 \pm bx - c = 0$$
 (2)

In category (I) let
$$N_s = \frac{b}{\sqrt{c}}$$

and in category (II) let $N_D = \frac{b}{\sqrt{c}}$

Then category I has a related equation of the form:

$$Q^2 \pm N_s Q + 1 = 0 (3)$$

and category II has a related equation of the form: —

$$Q^2 \pm N_D Q - 1 = 0 (4)$$

When the values of Q which satisfy equa-60 tions (3) and (4) for specific values of N_s or N_D are REAL, one value of Q is of a magnitude less than unity. If this value be first determined a value of "x" that satisfies in appropriate equations (1) or (2) can be found since

$$x = \sqrt{c}Q$$
 or $-\sqrt{c}Q$ (5)

65

70

90

95

In the case of category I the roots are real when N_s is equal to or greater than 2, and complex when N_s is less than 2. In category II all roots are REAL.

It is to be noted that inasmuch as the determination of complex roots can be effectively dealt with by using a combination of orthodox logarithmic scales A, B, C and D and a log $\sqrt{1-s^2}$ scale, this application is not concerned with the determination of such roots.

The invention, insofar as it relates to the solution of quadratic equations, is based on the appreciation of the fact that quadratic equations of the two categories specified can be reduced to a related equation in one or other of the two forms also specified, and that then, the normal equations for the evaluation of the roots of quadratic equations, as applied to the related equation, contains only one unknown (N_s or N_D as the case may be). To illustrate this more specifically, the roots of the equations (1) and (2) would take one or other of the forms:—

Each of these expressions contains the separate variables b and c and as such does not permit of scale presentations.

The roots of the respective related equations are

878,057

$$\frac{N_{\underline{S}} \pm \sqrt{\left(\frac{N_{\underline{S}}}{2}\right)^2 - 1}}{\sum_{\underline{S}} \pm \sqrt{\left(\frac{N_{\underline{S}}}{2}\right)^2 + 1}} \qquad \text{or} \qquad -\frac{N_{\underline{S}}}{2} \pm \sqrt{\left(\frac{N_{\underline{S}}}{2}\right)^2 - 1}$$

$$\frac{N_{\underline{D}} \pm \sqrt{\left(\frac{N_{\underline{D}}}{2}\right)^2 + 1}}{\sum_{\underline{S}} \pm \sqrt{\left(\frac{N_{\underline{D}}}{2}\right)^2 + 1}} \qquad \text{or} \qquad -\frac{N_{\underline{D}}}{2} \pm \sqrt{\left(\frac{N_{\underline{D}}}{2}\right)^2 + 1}$$

Each of these expressions contain only one variable $N_{\rm s}$ or $N_{\rm D}$ and can be presented in scale form.

According to the present invention, therefore, a slide rule calculator includes N_s and N_D scales marked in relationship to other scales to enable the roots of the related equation of a given quadratic equation to be directly ascertained by positive movement. Preferably the rule will also have other, conventional, scales so arranged as to enable N_s and N_D values to be directly ascertained by positive movement, using the values of the co-efficients of the quadratic equation to be solved, and, after the roots of the related equation have been found, to enable the roots of the quadratic equation to be solved to be directly ascertained by positive movement.

There will now be described, by way of example, a slide rule of the flat longitudinal slide type, especially designed for the evaluation of the real roots of quadratic equations.

The rule incorporates the following scales. On the stock there will be:—

(1) A logarithmic scale called the D scale, numbered 1 to 10, the distance between the 1 and 10 being the length unit of reference.

(2) A logarithmic scale called the A scale, consisting of two sections of logarithmic scale each of \(\frac{1}{2}\) unit and numbered 1 to 100. It is

each of $\frac{1}{2}$ unit and numbered 1 to 100. It is positioned so that 1 on the D scale aligns with 1 on the A scale and 10 on the D scale aligns with 100 on the A scale.

35 (3) Also on the stock an N_s scale and an N_D scale, which will be described more fully hereinafter.

On the face of the slide there will be:

- (1) A scale called the C scale similar to the 40 D scale.
 - (2) A scale called the B scale similar to the A scale.
 - (3) A reverse of C scale called RC and
 - (4) A reverse of B scale called RB.

The 1 and 100 on the B scale. 100 and 1 on the RB scale 10 and 1 on the RC scale

align respectively with

45

1 and 10 on the C scale.

To facilitate determination of the real roots of an equation in category I, the N_s scale will be numbered according to values of N_s, the line dimensions from a datum being:—

$$\log \left[\frac{N_s}{2} - \sqrt{\left(\frac{N_s}{2}\right)^2 - 1}\right]$$

and when arranged on the stock this scale is so positioned that the line of the scale for $N_s = 2$ aligns with 10 on the D scale. Projections from N_s values on this scale, by means of a cursor, will give the significant figures of an appropriate Q value less than unity that will satisfy equation (3).

To facilitate determination of the real roots of an equation in category II the N_D scale will be numbered according to value of N_D, the line dimensions from a datum being:—

$$Log \left[\sqrt{\left(\frac{N_{D}}{2}\right)^{2} + 1} - \frac{N_{D}}{2} \right]$$

and when arranged on the stock this scale is positioned so that the line of the scale for $N_{\rm D}\!=\!0$ aligns with the 10 on the D scale. Projections from $N_{\rm D}$ values on the $N_{\rm D}$ scale, by means of a cursor, will give the significant figures of an appropriate Q value of magnitude less than unity that will satisfy equation (4).

One unit length of N_s scale will serve for a range of N_s values 2 to 10.1 and one unit length of N_D scale will serve for a range of N_D values 0 to 9.9. Additional lengths of N_s and N_D scales may be added by the usual fold back system employed in slide rule art, that is for the second unit lengths of N_s and N_D scale, 10.1 and 9.9 respectively would align with D_{10} and continue in the direction of D_1 . For the purpose of projected values from the first sections of N_s or N_D to the D scale, the significant figure values of the D scale are for the range 0.1 to 1.0.

Using the rule described, i.e. with $N_{\rm s}$ and $N_{\rm D}$ scales on the stock, examples will illustrate the method of manipulation.

90

EXAMPLE 1.

Consider the determination of the roots of the equation

$$X^2 - 8.25x + 12 = 0$$

That quadratic equation falls in category 95

I and will involve the use of the $N_{\rm s}$ scale. From text-book information regarding quadratic equations, conclusions would be drawn that both roots are of positive sign.

Proceed as follows:—

(1) Set the cursor at 8.25 on the D scale.

(2) Move the slide so that 12 on the B scale is at the cursor, and on the D scale at C₁ read 238 the significant figure value 8.25 b

of $\frac{6.25}{\sqrt{12}}$ (i.e. $\frac{5}{\sqrt{c}}$). Decimal point considered 2.38.

(3) Move the cursor to 2.38 on the N_s scale (and made mental note of Q value in alignment on D, viz. .545).

15 (4) Bring 12 on the RB scale to the cursor and read on the D scale at C_1 the significant figures of the lesser numerical root $\sqrt{12x}$, 545 (i.e. $Q\sqrt{c}$) viz. 1.884.

(5) The magnitude of the other root

$$=8.25-1.884=6.366$$

or may be obtained by transferring the cursor to C_1 and then moving the slide bringing C_{12} to the cursor. On the C scale at D_{10} read 6.366.

25 Hence the roots are

1.884 and 6.366

EXAMPLE 2.

Consider the determination of the roots of the equation

30
$$x^2 + 7.35x - 24 = 0$$

which falls in category II and involves the use of the $N_{\rm D}$ scale. From text book information regarding quadratic equations, the conclusion would be reached that the roots are of opposite signs and that the root of lesser numerical magnitude is positive.

Proceed as follows:

35

50

(1) Set the cursor at 735 on the D scale.

(2) Move slide bringing 24 on the B scale 40 to the cursor, and on the D scale at index

 C_1 read the significant figure value of $\frac{7.35}{\sqrt{24}}$

viz. 150, decimal point considered 1.50.
 (3) Transfer the cursor to 1.5 on the N_D scale (mentally note the Q value on the D scale, viz. .5).

(4) Move the slide so that the 24 line on the RB scale is at the cursor and on the D scale at C₁ read the significant figures of √24 × 1.5 viz. 245, decimal point considered 2.45.

The magnitude of other root is

$$=7.35+2.45=9.8$$

or using the slide rule

(5) Transfer the cursor to C₁ and move slide bringing C₂₄ to the cursor. On the C scale at D₁₀ read 98, decimal point considered 9.8.

Hence the roots are:

$$+2.45$$
 and -9.80 .

Turning now to the solution of cubic equations, a cubic equation of the form

$$x^3 + ax^2 + bx + c = 0$$
 (6)

has a related equation of the form

$$z^3 - HZ + 1 = 0 (7)$$

The value of H in terms of a, b and c may be derived as follows:—

Where

$$f = \frac{a^2}{3} - b \tag{8}$$

and

$$g = \frac{2a^3}{27} - \frac{1ab}{3} + c$$
 (9) 70

Then

$$H = \frac{f}{3\sqrt{g^2}} \tag{10}$$

Also

$$x=3\sqrt{g}.Z-\frac{a}{3}$$
 (11)

85

Equation 7, with positive and negative values of Z considered, may be represented by a graph of the form shown in the single figure of the accompanying drawing. This graph can be considered in five sections:—

(1) o to n for negative values of Z range -.1 80 to -1.0

(2) n to m for negative values of Z range -1.0 to -10.0

(3) p to q for positive values of Z range .01 to .1

(4) q to r for positive values of Z range .1 to 1.0

(5) r to s for positive values of Z range 1.0 to 10.0.

The invention, insofar as it relates to the solution of cubic equations, is based on the appreciation of the fact that a cubic equation of the form specified can be reduced to a related equation of the form also specified and that then, the roots of the related equation can be solved by mathematical relationships involving only one variable.

Also according to the invention, therefore, a slide rule calculator includes such H scales marked in relationship to other scales to enable at least one real root of the related equation of a given cubic equation to be directly ascertained by positive movement. If H scales

878,057

corresponding to Z values of -.1 to -10.0 only are used then in nearly all cases it will be possible to evaluate a real root and the equation eventually converted to a quadratic equation and the solution completed by evaluating the roots of that quadratic equation in accordance with the invention, such scales as are necessary being, if desired, provided on the same rule. Alternatively H scales covering the full range of Z values hereinbefore specified may be used.

In order to illustrate the invention further the addition of scales enabling the roots of cubic equations to be evaluated to the slide rule previously described for the solution of quadratic equations will now be described.

Scales H_{on}, H_{nm}, H_{pq}, H_{qr}, and H_{rs} numbered according to H values (positive or negative) will be prepared, corresponding to each section of the graph, by the following method:—

A table of values of H for specific values of Z (positive or negative) is prepared by direct substitution in equation 7 and then, using selected Z values for purposes of inverse interpolation, Z values (positive or negative) for specific values of H are obtained.

Then, to the reference logarithmic unit of the D scale, line dimensions, from a datum, for H values on the scales to serve for portions o.n. and n.m. i.e. for Scales H_{on} and H_{nm} will be according to

and for portions p.q. q.r. and r.s. i.e. for scales H_{pq} , H_{qr} , and H_{rs} will be according to

Log Z

and assuming the scales are arranged on the stock of the slide rule, the datum of each of the scales will be in alignment with D_1 and run towards D_{10} .

Z values by projection from the new scales to the significant figure value D scale are as follows:—

For
$$H_{\rm on}$$
 $-.1$ to -1.0 $H_{\rm nm}$ -1.0 to -10.0 $H_{\rm pq}$ $+.01$ to $+.10$ $H_{\rm qr}$ $+.1$ to 1.0 $H_{\rm rs}$ $+1.0$ to 10.0

In an alternative arrangement, the scales are applied as reciprocals of H_{on} , H_{mn} , H_{pq} , H_{qr} , or H_{rs} by longitudinal inversion.

In other embodiments either the direct or reciprocal forms of H_{on} and H_{nm} may be produced as a continuous scale and related to the A and B scales of the slide rule. The same applies to H_{pq} , and H_{qr} or H_{qr} and H_{rs} . Simi-

larly scales H_{pq} , H_{qr} and H_{rs} may be continuous and related to a scale such as an F scale, which comprises three logarithmic sections 1 to 10, 10 to 100 and 100 to 1000, each being one third the length of the unit D scale. 1 on the F scale aligns with 1 on the D scale and 1000 on the F scale with 10 on the D scale.

When H is positive and equal to or greater than $3\sqrt{6.75}$, viz. 1.88988 the related equation has three real roots. For values of a, b and c that result in $H=3\sqrt{6.75}$, of the three real roots, two are equal.

In cases where H is less than $3\sqrt{6.75}$, of the three roots only one is real, namely, that which relates to the o, n, m portion of the graph

70

75

The following examples will serve to illustrate the manipulation of the special cubic scales.

EXAMPLE 3.

To determine the real root or real roots of the cubic equation

$$x^3 - 16x^2 + 73x - 90 = 0$$

In this case with reference to equation (6)

$$a = -16$$
 $b = 73$ $c = -90$

By normal arithmetical approach evaluate

and f, from equation (8) = 12.33 85 g, from equation (9) =
$$-4.074$$

The values of $3\sqrt{g}$ and $3\sqrt{g^2}$ may be found on the D and A scales respectively in alignment with the appropriate "g" value on the F scale, viz.

$$3\sqrt{-4.074} = -1.597$$
, $3\sqrt{g^2} = 2.550$

Then evaluate

$$H = \frac{f}{3\sqrt{g^2}} = \frac{12.333}{2.550} = 4.836$$

Since this H value is positive and greater than $953\sqrt{6.75}$, there are three real roots.

H values of +4.836 will be found on the H_{am} , H_{qr} and H_{rs} scales, and using the cursor for projection to the D scale, the respective Z values, viz. -2.296, .2086 and +2.088, 100 may be obtained.

Then since

$$x=3\sqrt{g} \cdot Z-\frac{a}{3}$$

and

$$3\sqrt{g} = 1.597$$
 and $a = -16$ 105

 x_1 , x_2 , and x_3 are the roots

$$x_{1} = (-1.597)(-2.296) - (\frac{-16}{3}) = 3.67 + 5.33 = 9$$

$$x_{2} = (-1.597)(.2086) - (\frac{-16}{3}) = -.333 + 5.333 = 5$$

$$x_{3} = (-1.597)(2.088) - (\frac{-16}{3}) = -3.333 + 5.333 = 2$$

tion are 9, 5 and 2.

When the H value lies within the range 10.01 and 100, the H_{nm} , $H_{p\eta}$, and H_{rs} scales would be involved.

Example 4.

10 Solve: -

$$x^3 + 6x^2 + 16x - 38 = 0$$

with reference to equation (6)

$$a=6$$
 $b=16$ $c=38$

then

15

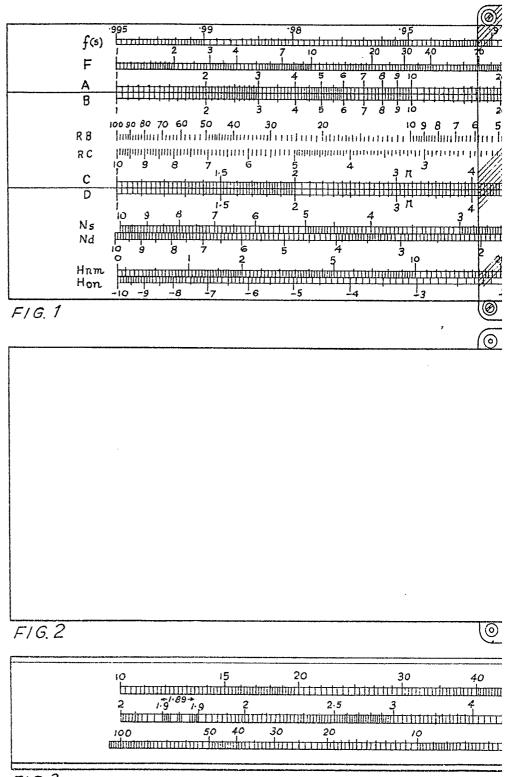
f from equation (8) =-4g from equation (9) = -54 $3\sqrt{g}$ from the slide rule = -3.78 $3\sqrt{g^2}$ from the slide rule = 14.29 \vec{H} from equation (10) = -.28

Thus the values of x which satisfy the equa-Here H is less than $3\sqrt{6.75}$ viz. -1.889 so there is only one real root. From the slide rule when

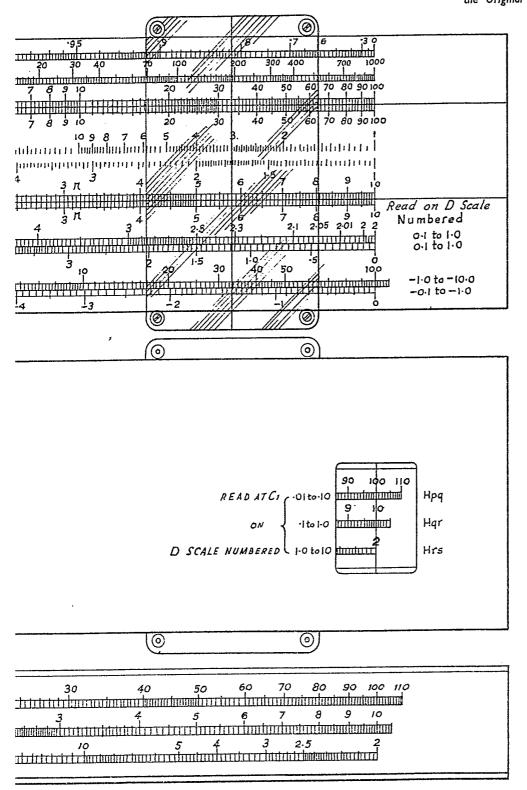
25

H = -.28

then Z = -.907

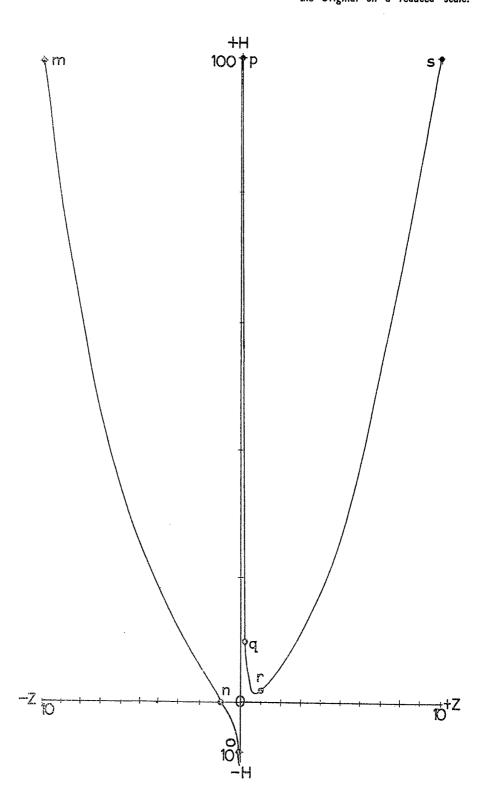

This is obtained by cursor projection from the -.28 line on the H_{on} scale to a D scale numbered -.1 to -1.0.

Then x from equation (11) since g, Z and 30 a are known


$$=(-378)(-.907)-\frac{6}{3}=1.428$$

For the Applicants, E. K. DUTTON & CO., Chartered Patent Agents, 57, Market Street, Manchester, 1.

Learnington Spa: Printed for Her Majesty's Stationery Office, by the Courier Press.—1961. Published by The Patent Office, 25, Southampton Buildings, London, W.C.2, from which copies may be obtained.



F/G.3

878,057 COMPLETE SPECIFICATION I SHEET This drawing is a reproduction of the Original on a reduced scale.

995 - 995 -		READ ATCIC. ON D SCALE NUMBERED	(a)	15 20 30 40 50 60 70 80 90 100 110 1111111111111111111
द्वे म ४ छ % ०	Ns Nd Nd Hnm Hom		F16.2	0.1

